| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add sk_is_inet and IS_ICSK check in tls_sw_has_ctx_tx/rx
As the introduction of the support for vsock and unix sockets in sockmap,
tls_sw_has_ctx_tx/rx cannot presume the socket passed in must be IS_ICSK.
vsock and af_unix sockets have vsock_sock and unix_sock instead of
inet_connection_sock. For these sockets, tls_get_ctx may return an invalid
pointer and cause page fault in function tls_sw_ctx_rx.
BUG: unable to handle page fault for address: 0000000000040030
Workqueue: vsock-loopback vsock_loopback_work
RIP: 0010:sk_psock_strp_data_ready+0x23/0x60
Call Trace:
? __die+0x81/0xc3
? no_context+0x194/0x350
? do_page_fault+0x30/0x110
? async_page_fault+0x3e/0x50
? sk_psock_strp_data_ready+0x23/0x60
virtio_transport_recv_pkt+0x750/0x800
? update_load_avg+0x7e/0x620
vsock_loopback_work+0xd0/0x100
process_one_work+0x1a7/0x360
worker_thread+0x30/0x390
? create_worker+0x1a0/0x1a0
kthread+0x112/0x130
? __kthread_cancel_work+0x40/0x40
ret_from_fork+0x1f/0x40
v2:
- Add IS_ICSK check
v3:
- Update the commits in Fixes |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Mark hrtimer to expire in hard interrupt context
Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard
interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the
timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels
unmarked hrtimers are moved into soft interrupt expiry mode by default.
Then the timers are canceled from an preempt-notifier which is invoked
with disabled preemption which is not allowed on PREEMPT_RT.
The timer callback is short so in could be invoked in hard-IRQ context.
So let the timer expire on hard-IRQ context even on -RT.
This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels:
BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002
Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns
CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774
Tainted: [W]=WARN
Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022
Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000
90000001167475a0 0000000000000000 90000001167475a8 9000000005644830
90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001
0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140
00000000000003fe 0000000000000001 000000000000000d 0000000000000003
0000000000000030 00000000000003f3 000000000790c000 9000000116747830
90000000057ef000 0000000000000000 9000000005644830 0000000000000004
0000000000000000 90000000057f4b58 0000000000000001 9000000116747868
900000000451b600 9000000005644830 9000000003a13998 0000000010000020
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003a13998>] show_stack+0x38/0x180
[<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0
[<9000000003a71708>] __schedule_bug+0x48/0x60
[<9000000004e45734>] __schedule+0x1114/0x1660
[<9000000004e46040>] schedule_rtlock+0x20/0x60
[<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0
[<9000000004e4f038>] rt_spin_lock+0x58/0x80
[<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0
[<9000000003b02e30>] hrtimer_cancel+0x70/0x80
[<ffff80000235eb70>] kvm_restore_timer+0x50/0x1a0 [kvm]
[<ffff8000023616c8>] kvm_arch_vcpu_load+0x68/0x2a0 [kvm]
[<ffff80000234c2d4>] kvm_sched_in+0x34/0x60 [kvm]
[<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0
[<9000000004e44a70>] __schedule+0x450/0x1660
[<9000000004e45cb0>] schedule+0x30/0x180
[<ffff800002354c70>] kvm_vcpu_block+0x70/0x120 [kvm]
[<ffff800002354d80>] kvm_vcpu_halt+0x60/0x3e0 [kvm]
[<ffff80000235b194>] kvm_handle_gspr+0x3f4/0x4e0 [kvm]
[<ffff80000235f548>] kvm_handle_exit+0x1c8/0x260 [kvm] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix possible exec queue leak in exec IOCTL
In a couple of places after an exec queue is looked up the exec IOCTL
returns on input errors without dropping the exec queue ref. Fix this
ensuring the exec queue ref is dropped on input error.
(cherry picked from commit 07064a200b40ac2195cb6b7b779897d9377e5e6f) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Drop VM dma-resv lock on xe_sync_in_fence_get failure in exec IOCTL
Upon failure all locks need to be dropped before returning to the user.
(cherry picked from commit 7d1a4258e602ffdce529f56686925034c1b3b095) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/imagination: Break an object reference loop
When remaining resources are being cleaned up on driver close,
outstanding VM mappings may result in resources being leaked, due
to an object reference loop, as shown below, with each object (or
set of objects) referencing the object below it:
PVR GEM Object
GPU scheduler "finished" fence
GPU scheduler “scheduled” fence
PVR driver “done” fence
PVR Context
PVR VM Context
PVR VM Mappings
PVR GEM Object
The reference that the PVR VM Context has on the VM mappings is a
soft one, in the sense that the freeing of outstanding VM mappings
is done as part of VM context destruction; no reference counts are
involved, as is the case for all the other references in the loop.
To break the reference loop during cleanup, free the outstanding
VM mappings before destroying the PVR Context associated with the
VM context. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: qcom-pmic: init value of hdr_len/txbuf_len earlier
If the read of USB_PDPHY_RX_ACKNOWLEDGE_REG failed, then hdr_len and
txbuf_len are uninitialized. This commit stops to print uninitialized
value and misleading/false data. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/thp: fix deferred split unqueue naming and locking
Recent changes are putting more pressure on THP deferred split queues:
under load revealing long-standing races, causing list_del corruptions,
"Bad page state"s and worse (I keep BUGs in both of those, so usually
don't get to see how badly they end up without). The relevant recent
changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin,
improved swap allocation, and underused THP splitting.
Before fixing locking: rename misleading folio_undo_large_rmappable(),
which does not undo large_rmappable, to folio_unqueue_deferred_split(),
which is what it does. But that and its out-of-line __callee are mm
internals of very limited usability: add comment and WARN_ON_ONCEs to
check usage; and return a bool to say if a deferred split was unqueued,
which can then be used in WARN_ON_ONCEs around safety checks (sparing
callers the arcane conditionals in __folio_unqueue_deferred_split()).
Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all
of whose callers now call it beforehand (and if any forget then bad_page()
will tell) - except for its caller put_pages_list(), which itself no
longer has any callers (and will be deleted separately).
Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0
without checking and unqueueing a THP folio from deferred split list;
which is unfortunate, since the split_queue_lock depends on the memcg
(when memcg is enabled); so swapout has been unqueueing such THPs later,
when freeing the folio, using the pgdat's lock instead: potentially
corrupting the memcg's list. __remove_mapping() has frozen refcount to 0
here, so no problem with calling folio_unqueue_deferred_split() before
resetting memcg_data.
That goes back to 5.4 commit 87eaceb3faa5 ("mm: thp: make deferred split
shrinker memcg aware"): which included a check on swapcache before adding
to deferred queue, but no check on deferred queue before adding THP to
swapcache. That worked fine with the usual sequence of events in reclaim
(though there were a couple of rare ways in which a THP on deferred queue
could have been swapped out), but 6.12 commit dafff3f4c850 ("mm: split
underused THPs") avoids splitting underused THPs in reclaim, which makes
swapcache THPs on deferred queue commonplace.
Keep the check on swapcache before adding to deferred queue? Yes: it is
no longer essential, but preserves the existing behaviour, and is likely
to be a worthwhile optimization (vmstat showed much more traffic on the
queue under swapping load if the check was removed); update its comment.
Memcg-v1 move (deprecated): mem_cgroup_move_account() has been changing
folio->memcg_data without checking and unqueueing a THP folio from the
deferred list, sometimes corrupting "from" memcg's list, like swapout.
Refcount is non-zero here, so folio_unqueue_deferred_split() can only be
used in a WARN_ON_ONCE to validate the fix, which must be done earlier:
mem_cgroup_move_charge_pte_range() first try to split the THP (splitting
of course unqueues), or skip it if that fails. Not ideal, but moving
charge has been requested, and khugepaged should repair the THP later:
nobody wants new custom unqueueing code just for this deprecated case.
The 87eaceb3faa5 commit did have the code to move from one deferred list
to another (but was not conscious of its unsafety while refcount non-0);
but that was removed by 5.6 commit fac0516b5534 ("mm: thp: don't need care
deferred split queue in memcg charge move path"), which argued that the
existence of a PMD mapping guarantees that the THP cannot be on a deferred
list. As above, false in rare cases, and now commonly false.
Backport to 6.11 should be straightforward. Earlier backports must take
care that other _deferred_list fixes and dependencies are included. There
is not a strong case for backports, but they can fix cornercases. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: Fix NULL vs IS_ERR() check in probe()
The iommu_paging_domain_alloc() function doesn't return NULL pointers,
it returns error pointers. Update the check to match. |
| In the Linux kernel, the following vulnerability has been resolved:
rpcrdma: Always release the rpcrdma_device's xa_array
Dai pointed out that the xa_init_flags() in rpcrdma_add_one() needs
to have a matching xa_destroy() in rpcrdma_remove_one() to release
underlying memory that the xarray might have accrued during
operation. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: gts-helper: Fix memory leaks for the error path of iio_gts_build_avail_scale_table()
If per_time_scales[i] or per_time_gains[i] kcalloc fails in the for loop
of iio_gts_build_avail_scale_table(), the err_free_out will fail to call
kfree() each time when i is reduced to 0, so all the per_time_scales[0]
and per_time_gains[0] will not be freed, which will cause memory leaks.
Fix it by checking if i >= 0. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't leak a link on AP removal
Release the link mapping resource in AP removal. This impacted devices
that do not support the MLD API (9260 and down).
On those devices, we couldn't start the AP again after the AP has been
already started and stopped. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Be stricter about IO mapping flags
The current panthor_device_mmap_io() implementation has two issues:
1. For mapping DRM_PANTHOR_USER_FLUSH_ID_MMIO_OFFSET,
panthor_device_mmap_io() bails if VM_WRITE is set, but does not clear
VM_MAYWRITE. That means userspace can use mprotect() to make the mapping
writable later on. This is a classic Linux driver gotcha.
I don't think this actually has any impact in practice:
When the GPU is powered, writes to the FLUSH_ID seem to be ignored; and
when the GPU is not powered, the dummy_latest_flush page provided by the
driver is deliberately designed to not do any flushes, so the only thing
writing to the dummy_latest_flush could achieve would be to make *more*
flushes happen.
2. panthor_device_mmap_io() does not block MAP_PRIVATE mappings (which are
mappings without the VM_SHARED flag).
MAP_PRIVATE in combination with VM_MAYWRITE indicates that the VMA has
copy-on-write semantics, which for VM_PFNMAP are semi-supported but
fairly cursed.
In particular, in such a mapping, the driver can only install PTEs
during mmap() by calling remap_pfn_range() (because remap_pfn_range()
wants to **store the physical address of the mapped physical memory into
the vm_pgoff of the VMA**); installing PTEs later on with a fault
handler (as panthor does) is not supported in private mappings, and so
if you try to fault in such a mapping, vmf_insert_pfn_prot() splats when
it hits a BUG() check.
Fix it by clearing the VM_MAYWRITE flag (userspace writing to the FLUSH_ID
doesn't make sense) and requiring VM_SHARED (copy-on-write semantics for
the FLUSH_ID don't make sense).
Reproducers for both scenarios are in the notes of my patch on the mailing
list; I tested that these bugs exist on a Rock 5B machine.
Note that I only compile-tested the patch, I haven't tested it; I don't
have a working kernel build setup for the test machine yet. Please test it
before applying it. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: scm: fix a NULL-pointer dereference
Some SCM calls can be invoked with __scm being NULL (the driver may not
have been and will not be probed as there's no SCM entry in device-tree).
Make sure we don't dereference a NULL pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab: fix warning caused by duplicate kmem_cache creation in kmem_buckets_create
Commit b035f5a6d852 ("mm: slab: reduce the kmalloc() minimum alignment
if DMA bouncing possible") reduced ARCH_KMALLOC_MINALIGN to 8 on arm64.
However, with KASAN_HW_TAGS enabled, arch_slab_minalign() becomes 16.
This causes kmalloc_caches[*][8] to be aliased to kmalloc_caches[*][16],
resulting in kmem_buckets_create() attempting to create a kmem_cache for
size 16 twice. This duplication triggers warnings on boot:
[ 2.325108] ------------[ cut here ]------------
[ 2.325135] kmem_cache of name 'memdup_user-16' already exists
[ 2.325783] WARNING: CPU: 0 PID: 1 at mm/slab_common.c:107 __kmem_cache_create_args+0xb8/0x3b0
[ 2.327957] Modules linked in:
[ 2.328550] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5mm-unstable-arm64+ #12
[ 2.328683] Hardware name: QEMU QEMU Virtual Machine, BIOS 2024.02-2 03/11/2024
[ 2.328790] pstate: 61000009 (nZCv daif -PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2.328911] pc : __kmem_cache_create_args+0xb8/0x3b0
[ 2.328930] lr : __kmem_cache_create_args+0xb8/0x3b0
[ 2.328942] sp : ffff800083d6fc50
[ 2.328961] x29: ffff800083d6fc50 x28: f2ff0000c1674410 x27: ffff8000820b0598
[ 2.329061] x26: 000000007fffffff x25: 0000000000000010 x24: 0000000000002000
[ 2.329101] x23: ffff800083d6fce8 x22: ffff8000832222e8 x21: ffff800083222388
[ 2.329118] x20: f2ff0000c1674410 x19: f5ff0000c16364c0 x18: ffff800083d80030
[ 2.329135] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 2.329152] x14: 0000000000000000 x13: 0a73747369786520 x12: 79646165726c6120
[ 2.329169] x11: 656820747563205b x10: 2d2d2d2d2d2d2d2d x9 : 0000000000000000
[ 2.329194] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 2.329210] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
[ 2.329226] x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
[ 2.329291] Call trace:
[ 2.329407] __kmem_cache_create_args+0xb8/0x3b0
[ 2.329499] kmem_buckets_create+0xfc/0x320
[ 2.329526] init_user_buckets+0x34/0x78
[ 2.329540] do_one_initcall+0x64/0x3c8
[ 2.329550] kernel_init_freeable+0x26c/0x578
[ 2.329562] kernel_init+0x3c/0x258
[ 2.329574] ret_from_fork+0x10/0x20
[ 2.329698] ---[ end trace 0000000000000000 ]---
[ 2.403704] ------------[ cut here ]------------
[ 2.404716] kmem_cache of name 'msg_msg-16' already exists
[ 2.404801] WARNING: CPU: 2 PID: 1 at mm/slab_common.c:107 __kmem_cache_create_args+0xb8/0x3b0
[ 2.404842] Modules linked in:
[ 2.404971] CPU: 2 UID: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.12.0-rc5mm-unstable-arm64+ #12
[ 2.405026] Tainted: [W]=WARN
[ 2.405043] Hardware name: QEMU QEMU Virtual Machine, BIOS 2024.02-2 03/11/2024
[ 2.405057] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 2.405079] pc : __kmem_cache_create_args+0xb8/0x3b0
[ 2.405100] lr : __kmem_cache_create_args+0xb8/0x3b0
[ 2.405111] sp : ffff800083d6fc50
[ 2.405115] x29: ffff800083d6fc50 x28: fbff0000c1674410 x27: ffff8000820b0598
[ 2.405135] x26: 000000000000ffd0 x25: 0000000000000010 x24: 0000000000006000
[ 2.405153] x23: ffff800083d6fce8 x22: ffff8000832222e8 x21: ffff800083222388
[ 2.405169] x20: fbff0000c1674410 x19: fdff0000c163d6c0 x18: ffff800083d80030
[ 2.405185] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 2.405201] x14: 0000000000000000 x13: 0a73747369786520 x12: 79646165726c6120
[ 2.405217] x11: 656820747563205b x10: 2d2d2d2d2d2d2d2d x9 : 0000000000000000
[ 2.405233] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 2.405248] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
[ 2.405271] x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
[ 2.405287] Call trace:
[ 2
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix idpf_vc_core_init error path
In an event where the platform running the device control plane
is rebooted, reset is detected on the driver. It releases
all the resources and waits for the reset to complete. Once the
reset is done, it tries to build the resources back. At this
time if the device control plane is not yet started, then
the driver timeouts on the virtchnl message and retries to
establish the mailbox again.
In the retry flow, mailbox is deinitialized but the mailbox
workqueue is still alive and polling for the mailbox message.
This results in accessing the released control queue leading to
null-ptr-deref. Fix it by unrolling the work queue cancellation
and mailbox deinitialization in the reverse order which they got
initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mgb4: protect driver against spectre
Frequency range is set from sysfs via frequency_range_store(),
being vulnerable to spectre, as reported by smatch:
drivers/media/pci/mgb4/mgb4_cmt.c:231 mgb4_cmt_set_vin_freq_range() warn: potential spectre issue 'cmt_vals_in' [r]
drivers/media/pci/mgb4/mgb4_cmt.c:238 mgb4_cmt_set_vin_freq_range() warn: possible spectre second half. 'reg_set'
Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix potential NULL dereference in mtk_crtc_destroy()
In mtk_crtc_create(), if the call to mbox_request_channel() fails then we
set the "mtk_crtc->cmdq_client.chan" pointer to NULL. In that situation,
we do not call cmdq_pkt_create().
During the cleanup, we need to check if the "mtk_crtc->cmdq_client.chan"
is NULL first before calling cmdq_pkt_destroy(). Calling
cmdq_pkt_destroy() is unnecessary if we didn't call cmdq_pkt_create() and
it will result in a NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
slub/kunit: fix a WARNING due to unwrapped __kmalloc_cache_noprof
'modprobe slub_kunit' will have a warning as shown below. The root cause
is that __kmalloc_cache_noprof was directly used, which resulted in no
alloc_tag being allocated. This caused current->alloc_tag to be null,
leading to a warning in alloc_tag_add_check.
Let's add an alloc_hook layer to __kmalloc_cache_noprof specifically
within lib/slub_kunit.c, which is the only user of this internal slub
function outside kmalloc implementation itself.
[58162.947016] WARNING: CPU: 2 PID: 6210 at
./include/linux/alloc_tag.h:125 alloc_tagging_slab_alloc_hook+0x268/0x27c
[58162.957721] Call trace:
[58162.957919] alloc_tagging_slab_alloc_hook+0x268/0x27c
[58162.958286] __kmalloc_cache_noprof+0x14c/0x344
[58162.958615] test_kmalloc_redzone_access+0x50/0x10c [slub_kunit]
[58162.959045] kunit_try_run_case+0x74/0x184 [kunit]
[58162.959401] kunit_generic_run_threadfn_adapter+0x2c/0x4c [kunit]
[58162.959841] kthread+0x10c/0x118
[58162.960093] ret_from_fork+0x10/0x20
[58162.960363] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix crash on probe for DPLL enabled E810 LOM
The E810 Lan On Motherboard (LOM) design is vendor specific. Intel
provides the reference design, but it is up to vendor on the final
product design. For some cases, like Linux DPLL support, the static
values defined in the driver does not reflect the actual LOM design.
Current implementation of dpll pins is causing the crash on probe
of the ice driver for such DPLL enabled E810 LOM designs:
WARNING: (...) at drivers/dpll/dpll_core.c:495 dpll_pin_get+0x2c4/0x330
...
Call Trace:
<TASK>
? __warn+0x83/0x130
? dpll_pin_get+0x2c4/0x330
? report_bug+0x1b7/0x1d0
? handle_bug+0x42/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? dpll_pin_get+0x117/0x330
? dpll_pin_get+0x2c4/0x330
? dpll_pin_get+0x117/0x330
ice_dpll_get_pins.isra.0+0x52/0xe0 [ice]
...
The number of dpll pins enabled by LOM vendor is greater than expected
and defined in the driver for Intel designed NICs, which causes the crash.
Prevent the crash and allow generic pin initialization within Linux DPLL
subsystem for DPLL enabled E810 LOM designs.
Newly designed solution for described issue will be based on "per HW
design" pin initialization. It requires pin information dynamically
acquired from the firmware and is already in progress, planned for
next-tree only. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: init: protect sched with rcu_read_lock
Enabling CONFIG_PROVE_RCU_LIST with its dependence CONFIG_RCU_EXPERT
creates this splat when an MPTCP socket is created:
=============================
WARNING: suspicious RCU usage
6.12.0-rc2+ #11 Not tainted
-----------------------------
net/mptcp/sched.c:44 RCU-list traversed in non-reader section!!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
no locks held by mptcp_connect/176.
stack backtrace:
CPU: 0 UID: 0 PID: 176 Comm: mptcp_connect Not tainted 6.12.0-rc2+ #11
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:123)
lockdep_rcu_suspicious (kernel/locking/lockdep.c:6822)
mptcp_sched_find (net/mptcp/sched.c:44 (discriminator 7))
mptcp_init_sock (net/mptcp/protocol.c:2867 (discriminator 1))
? sock_init_data_uid (arch/x86/include/asm/atomic.h:28)
inet_create.part.0.constprop.0 (net/ipv4/af_inet.c:386)
? __sock_create (include/linux/rcupdate.h:347 (discriminator 1))
__sock_create (net/socket.c:1576)
__sys_socket (net/socket.c:1671)
? __pfx___sys_socket (net/socket.c:1712)
? do_user_addr_fault (arch/x86/mm/fault.c:1419 (discriminator 1))
__x64_sys_socket (net/socket.c:1728)
do_syscall_64 (arch/x86/entry/common.c:52 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
That's because when the socket is initialised, rcu_read_lock() is not
used despite the explicit comment written above the declaration of
mptcp_sched_find() in sched.c. Adding the missing lock/unlock avoids the
warning. |