Search Results (16745 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53607 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: ymfpci: Fix BUG_ON in probe function The snd_dma_buffer.bytes field now contains the aligned size, which this snd_BUG_ON() did not account for, resulting in the following: [ 9.625915] ------------[ cut here ]------------ [ 9.633440] WARNING: CPU: 0 PID: 126 at sound/pci/ymfpci/ymfpci_main.c:2168 snd_ymfpci_create+0x681/0x698 [snd_ymfpci] [ 9.648926] Modules linked in: snd_ymfpci(+) snd_intel_dspcfg kvm(+) snd_intel_sdw_acpi snd_ac97_codec snd_mpu401_uart snd_opl3_lib irqbypass snd_hda_codec gameport snd_rawmidi crct10dif_pclmul crc32_pclmul cfg80211 snd_hda_core polyval_clmulni polyval_generic gf128mul snd_seq_device ghash_clmulni_intel snd_hwdep ac97_bus sha512_ssse3 rfkill snd_pcm aesni_intel tg3 snd_timer crypto_simd snd mxm_wmi libphy cryptd k10temp fam15h_power pcspkr soundcore sp5100_tco wmi acpi_cpufreq mac_hid dm_multipath sg loop fuse dm_mod bpf_preload ip_tables x_tables ext4 crc32c_generic crc16 mbcache jbd2 sr_mod cdrom ata_generic pata_acpi firewire_ohci crc32c_intel firewire_core xhci_pci crc_itu_t pata_via xhci_pci_renesas floppy [ 9.711849] CPU: 0 PID: 126 Comm: kworker/0:2 Not tainted 6.1.21-1-lts #1 08d2e5ece03136efa7c6aeea9a9c40916b1bd8da [ 9.722200] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./990FX Extreme4, BIOS P2.70 06/05/2014 [ 9.732204] Workqueue: events work_for_cpu_fn [ 9.736580] RIP: 0010:snd_ymfpci_create+0x681/0x698 [snd_ymfpci] [ 9.742594] Code: 8c c0 4c 89 e2 48 89 df 48 c7 c6 92 c6 8c c0 e8 15 d0 e9 ff 48 83 c4 08 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f e9 d3 7a 33 e3 <0f> 0b e9 cb fd ff ff 41 bd fb ff ff ff eb db 41 bd f4 ff ff ff eb [ 9.761358] RSP: 0018:ffffab64804e7da0 EFLAGS: 00010287 [ 9.766594] RAX: ffff8fa2df06c400 RBX: ffff8fa3073a8000 RCX: ffff8fa303fbc4a8 [ 9.773734] RDX: ffff8fa2df06d000 RSI: 0000000000000010 RDI: 0000000000000020 [ 9.780876] RBP: ffff8fa300b5d0d0 R08: ffff8fa3073a8e50 R09: 00000000df06bf00 [ 9.788018] R10: ffff8fa2df06bf00 R11: 00000000df068200 R12: ffff8fa3073a8918 [ 9.795159] R13: 0000000000000000 R14: 0000000000000080 R15: ffff8fa2df068200 [ 9.802317] FS: 0000000000000000(0000) GS:ffff8fa9fec00000(0000) knlGS:0000000000000000 [ 9.810414] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9.816158] CR2: 000055febaf66500 CR3: 0000000101a2e000 CR4: 00000000000406f0 [ 9.823301] Call Trace: [ 9.825747] <TASK> [ 9.827889] snd_card_ymfpci_probe+0x194/0x950 [snd_ymfpci b78a5fe64b5663a6390a909c67808567e3e73615] [ 9.837030] ? finish_task_switch.isra.0+0x90/0x2d0 [ 9.841918] local_pci_probe+0x45/0x80 [ 9.845680] work_for_cpu_fn+0x1a/0x30 [ 9.849431] process_one_work+0x1c7/0x380 [ 9.853464] worker_thread+0x1af/0x390 [ 9.857225] ? rescuer_thread+0x3b0/0x3b0 [ 9.861254] kthread+0xde/0x110 [ 9.864414] ? kthread_complete_and_exit+0x20/0x20 [ 9.869210] ret_from_fork+0x22/0x30 [ 9.872792] </TASK> [ 9.874985] ---[ end trace 0000000000000000 ]---
CVE-2023-53578 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: Fix an uninit variable access bug in qrtr_tx_resume() Syzbot reported a bug as following: ===================================================== BUG: KMSAN: uninit-value in qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230 qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230 qrtr_endpoint_post+0xf85/0x11b0 net/qrtr/af_qrtr.c:519 qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108 call_write_iter include/linux/fs.h:2189 [inline] aio_write+0x63a/0x950 fs/aio.c:1600 io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019 __do_sys_io_submit fs/aio.c:2078 [inline] __se_sys_io_submit+0x293/0x770 fs/aio.c:2048 __x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was created at: slab_post_alloc_hook mm/slab.h:766 [inline] slab_alloc_node mm/slub.c:3452 [inline] __kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491 __do_kmalloc_node mm/slab_common.c:967 [inline] __kmalloc_node_track_caller+0x114/0x3b0 mm/slab_common.c:988 kmalloc_reserve net/core/skbuff.c:492 [inline] __alloc_skb+0x3af/0x8f0 net/core/skbuff.c:565 __netdev_alloc_skb+0x120/0x7d0 net/core/skbuff.c:630 qrtr_endpoint_post+0xbd/0x11b0 net/qrtr/af_qrtr.c:446 qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108 call_write_iter include/linux/fs.h:2189 [inline] aio_write+0x63a/0x950 fs/aio.c:1600 io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019 __do_sys_io_submit fs/aio.c:2078 [inline] __se_sys_io_submit+0x293/0x770 fs/aio.c:2048 __x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd It is because that skb->len requires at least sizeof(struct qrtr_ctrl_pkt) in qrtr_tx_resume(). And skb->len equals to size in qrtr_endpoint_post(). But size is less than sizeof(struct qrtr_ctrl_pkt) when qrtr_cb->type equals to QRTR_TYPE_RESUME_TX in qrtr_endpoint_post() under the syzbot scenario. This triggers the uninit variable access bug. Add size check when qrtr_cb->type equals to QRTR_TYPE_RESUME_TX in qrtr_endpoint_post() to fix the bug.
CVE-2023-53577 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, cpumap: Make sure kthread is running before map update returns The following warning was reported when running stress-mode enabled xdp_redirect_cpu with some RT threads: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135 CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: events cpu_map_kthread_stop RIP: 0010:put_cpu_map_entry+0xda/0x220 ...... Call Trace: <TASK> ? show_regs+0x65/0x70 ? __warn+0xa5/0x240 ...... ? put_cpu_map_entry+0xda/0x220 cpu_map_kthread_stop+0x41/0x60 process_one_work+0x6b0/0xb80 worker_thread+0x96/0x720 kthread+0x1a5/0x1f0 ret_from_fork+0x3a/0x70 ret_from_fork_asm+0x1b/0x30 </TASK> The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory leak in cpu_map_update_elem"). The kthread is stopped prematurely by kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call cpu_map_kthread_run() at all but XDP program has already queued some frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks the ptr_ring, it will find it was not emptied and report a warning. An alternative fix is to use __cpu_map_ring_cleanup() to drop these pending frames or skbs when kthread_stop() returns -EINTR, but it may confuse the user, because these frames or skbs have been handled correctly by XDP program. So instead of dropping these frames or skbs, just make sure the per-cpu kthread is running before __cpu_map_entry_alloc() returns. After apply the fix, the error handle for kthread_stop() will be unnecessary because it will always return 0, so just remove it.
CVE-2023-53575 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: fix potential array out of bounds access Account for IWL_SEC_WEP_KEY_OFFSET when needed while verifying key_len size in iwl_mvm_sec_key_add().
CVE-2023-53586 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix multiple LUN_RESET handling This fixes a bug where an initiator thinks a LUN_RESET has cleaned up running commands when it hasn't. The bug was added in commit 51ec502a3266 ("target: Delete tmr from list before processing"). The problem occurs when: 1. We have N I/O cmds running in the target layer spread over 2 sessions. 2. The initiator sends a LUN_RESET for each session. 3. session1's LUN_RESET loops over all the running commands from both sessions and moves them to its local drain_task_list. 4. session2's LUN_RESET does not see the LUN_RESET from session1 because the commit above has it remove itself. session2 also does not see any commands since the other reset moved them off the state lists. 5. sessions2's LUN_RESET will then complete with a successful response. 6. sessions2's inititor believes the running commands on its session are now cleaned up due to the successful response and cleans up the running commands from its side. It then restarts them. 7. The commands do eventually complete on the backend and the target starts to return aborted task statuses for them. The initiator will either throw a invalid ITT error or might accidentally lookup a new task if the ITT has been reallocated already. Fix the bug by reverting the patch, and serialize the execution of LUN_RESETs and Preempt and Aborts. Also prevent us from waiting on LUN_RESETs in core_tmr_drain_tmr_list, because it turns out the original patch fixed a bug that was not mentioned. For LUN_RESET1 core_tmr_drain_tmr_list can see a second LUN_RESET and wait on it. Then the second reset will run core_tmr_drain_tmr_list and see the first reset and wait on it resulting in a deadlock.
CVE-2023-53546 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: DR, fix memory leak in mlx5dr_cmd_create_reformat_ctx when mlx5_cmd_exec failed in mlx5dr_cmd_create_reformat_ctx, the memory pointed by 'in' is not released, which will cause memory leak. Move memory release after mlx5_cmd_exec.
CVE-2023-53597 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix mid leak during reconnection after timeout threshold When the number of responses with status of STATUS_IO_TIMEOUT exceeds a specified threshold (NUM_STATUS_IO_TIMEOUT), we reconnect the connection. But we do not return the mid, or the credits returned for the mid, or reduce the number of in-flight requests. This bug could result in the server->in_flight count to go bad, and also cause a leak in the mids. This change moves the check to a few lines below where the response is decrypted, even of the response is read from the transform header. This way, the code for returning the mids can be reused. Also, the cifs_reconnect was reconnecting just the transport connection before. In case of multi-channel, this may not be what we want to do after several timeouts. Changed that to reconnect the session and the tree too. Also renamed NUM_STATUS_IO_TIMEOUT to a more appropriate name MAX_STATUS_IO_TIMEOUT.
CVE-2023-53589 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: don't trust firmware n_channels If the firmware sends us a corrupted MCC response with n_channels much larger than the command response can be, we might copy far too much (uninitialized) memory and even crash if the n_channels is large enough to make it run out of the one page allocated for the FW response. Fix that by checking the lengths. Doing a < comparison would be sufficient, but the firmware should be doing it correctly, so check more strictly.
CVE-2023-53615 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix deletion race condition System crash when using debug kernel due to link list corruption. The cause of the link list corruption is due to session deletion was allowed to queue up twice. Here's the internal trace that show the same port was allowed to double queue for deletion on different cpu. 20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 Move the clearing/setting of deleted flag lock.
CVE-2023-53544 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: cpufreq: davinci: Fix clk use after free The remove function first frees the clks and only then calls cpufreq_unregister_driver(). If one of the cpufreq callbacks is called just before cpufreq_unregister_driver() is run, the freed clks might be used.
CVE-2023-53541 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: brcmnand: Fix potential out-of-bounds access in oob write When the oob buffer length is not in multiple of words, the oob write function does out-of-bounds read on the oob source buffer at the last iteration. Fix that by always checking length limit on the oob buffer read and fill with 0xff when reaching the end of the buffer to the oob registers.
CVE-2023-53585 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: reject unhashed sockets in bpf_sk_assign The semantics for bpf_sk_assign are as follows: sk = some_lookup_func() bpf_sk_assign(skb, sk) bpf_sk_release(sk) That is, the sk is not consumed by bpf_sk_assign. The function therefore needs to make sure that sk lives long enough to be consumed from __inet_lookup_skb. The path through the stack for a TCPv4 packet is roughly: netif_receive_skb_core: takes RCU read lock __netif_receive_skb_core: sch_handle_ingress: tcf_classify: bpf_sk_assign() deliver_ptype_list_skb: deliver_skb: ip_packet_type->func == ip_rcv: ip_rcv_core: ip_rcv_finish_core: dst_input: ip_local_deliver: ip_local_deliver_finish: ip_protocol_deliver_rcu: tcp_v4_rcv: __inet_lookup_skb: skb_steal_sock The existing helper takes advantage of the fact that everything happens in the same RCU critical section: for sockets with SOCK_RCU_FREE set bpf_sk_assign never takes a reference. skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put if necessary. This approach assumes that SOCK_RCU_FREE is never set on a sk between bpf_sk_assign and skb_steal_sock, but this invariant is violated by unhashed UDP sockets. A new UDP socket is created in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only added in udp_lib_get_port() which happens when a socket is bound. When bpf_sk_assign was added it wasn't possible to access unhashed UDP sockets from BPF, so this wasn't a problem. This changed in commit 0c48eefae712 ("sock_map: Lift socket state restriction for datagram sockets"), but the helper wasn't adjusted accordingly. The following sequence of events will therefore lead to a refcount leak: 1. Add socket(AF_INET, SOCK_DGRAM) to a sockmap. 2. Pull socket out of sockmap and bpf_sk_assign it. Since SOCK_RCU_FREE is not set we increment the refcount. 3. bind() or connect() the socket, setting SOCK_RCU_FREE. 4. skb_steal_sock will now set refcounted = false due to SOCK_RCU_FREE. 5. tcp_v4_rcv() skips sock_put(). Fix the problem by rejecting unhashed sockets in bpf_sk_assign(). This matches the behaviour of __inet_lookup_skb which is ultimately the goal of bpf_sk_assign().
CVE-2023-53584 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubifs: ubifs_releasepage: Remove ubifs_assert(0) to valid this process There are two states for ubifs writing pages: 1. Dirty, Private 2. Not Dirty, Not Private The normal process cannot go to ubifs_releasepage() which means there exists pages being private but not dirty. Reproducer[1] shows that it could occur (which maybe related to [2]) with following process: PA PB PC lock(page)[PA] ubifs_write_end attach_page_private // set Private __set_page_dirty_nobuffers // set Dirty unlock(page) write_cache_pages[PA] lock(page) clear_page_dirty_for_io(page) // clear Dirty ubifs_writepage do_truncation[PB] truncate_setsize i_size_write(inode, newsize) // newsize = 0 i_size = i_size_read(inode) // i_size = 0 end_index = i_size >> PAGE_SHIFT if (page->index > end_index) goto out // jump out: unlock(page) // Private, Not Dirty generic_fadvise[PC] lock(page) invalidate_inode_page try_to_release_page ubifs_releasepage ubifs_assert(c, 0) // bad assertion! unlock(page) truncate_pagecache[PB] Then we may get following assertion failed: UBIFS error (ubi0:0 pid 1683): ubifs_assert_failed [ubifs]: UBIFS assert failed: 0, in fs/ubifs/file.c:1513 UBIFS warning (ubi0:0 pid 1683): ubifs_ro_mode [ubifs]: switched to read-only mode, error -22 CPU: 2 PID: 1683 Comm: aa Not tainted 5.16.0-rc5-00184-g0bca5994cacc-dirty #308 Call Trace: dump_stack+0x13/0x1b ubifs_ro_mode+0x54/0x60 [ubifs] ubifs_assert_failed+0x4b/0x80 [ubifs] ubifs_releasepage+0x67/0x1d0 [ubifs] try_to_release_page+0x57/0xe0 invalidate_inode_page+0xfb/0x130 __invalidate_mapping_pages+0xb9/0x280 invalidate_mapping_pagevec+0x12/0x20 generic_fadvise+0x303/0x3c0 ksys_fadvise64_64+0x4c/0xb0 [1] https://bugzilla.kernel.org/show_bug.cgi?id=215373 [2] https://linux-mtd.infradead.narkive.com/NQoBeT1u/patch-rfc-ubifs-fix-assert-failed-in-ubifs-set-page-dirty
CVE-2023-53537 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid use-after-free for cached IPU bio xfstest generic/019 reports a bug: kernel BUG at mm/filemap.c:1619! RIP: 0010:folio_end_writeback+0x8a/0x90 Call Trace: end_page_writeback+0x1c/0x60 f2fs_write_end_io+0x199/0x420 bio_endio+0x104/0x180 submit_bio_noacct+0xa5/0x510 submit_bio+0x48/0x80 f2fs_submit_write_bio+0x35/0x300 f2fs_submit_merged_ipu_write+0x2a0/0x2b0 f2fs_write_single_data_page+0x838/0x8b0 f2fs_write_cache_pages+0x379/0xa30 f2fs_write_data_pages+0x30c/0x340 do_writepages+0xd8/0x1b0 __writeback_single_inode+0x44/0x370 writeback_sb_inodes+0x233/0x4d0 __writeback_inodes_wb+0x56/0xf0 wb_writeback+0x1dd/0x2d0 wb_workfn+0x367/0x4a0 process_one_work+0x21d/0x430 worker_thread+0x4e/0x3c0 kthread+0x103/0x130 ret_from_fork+0x2c/0x50 The root cause is: after cp_error is set, f2fs_submit_merged_ipu_write() in f2fs_write_single_data_page() tries to flush IPU bio in cache, however f2fs_submit_merged_ipu_write() missed to check validity of @bio parameter, result in submitting random cached bio which belong to other IO context, then it will cause use-after-free issue, fix it by adding additional validity check.
CVE-2023-53599 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - Fix missing initialisation affecting gcm-aes-s390 Fix af_alg_alloc_areq() to initialise areq->first_rsgl.sgl.sgt.sgl to point to the scatterlist array in areq->first_rsgl.sgl.sgl. Without this, the gcm-aes-s390 driver will oops when it tries to do gcm_walk_start() on req->dst because req->dst is set to the value of areq->first_rsgl.sgl.sgl by _aead_recvmsg() calling aead_request_set_crypt(). The problem comes if an empty ciphertext is passed: the loop in af_alg_get_rsgl() just passes straight out and doesn't set areq->first_rsgl up. This isn't a problem on x86_64 using gcmaes_crypt_by_sg() because, as far as I can tell, that ignores req->dst and only uses req->src[*]. [*] Is this a bug in aesni-intel_glue.c? The s390x oops looks something like: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 0000000a00000000 TEID: 0000000a00000803 Fault in home space mode while using kernel ASCE. AS:00000000a43a0007 R3:0000000000000024 Oops: 003b ilc:2 [#1] SMP ... Call Trace: [<000003ff7fc3d47e>] gcm_walk_start+0x16/0x28 [aes_s390] [<00000000a2a342f2>] crypto_aead_decrypt+0x9a/0xb8 [<00000000a2a60888>] aead_recvmsg+0x478/0x698 [<00000000a2e519a0>] sock_recvmsg+0x70/0xb0 [<00000000a2e51a56>] sock_read_iter+0x76/0xa0 [<00000000a273e066>] vfs_read+0x26e/0x2a8 [<00000000a273e8c4>] ksys_read+0xbc/0x100 [<00000000a311d808>] __do_syscall+0x1d0/0x1f8 [<00000000a312ff30>] system_call+0x70/0x98 Last Breaking-Event-Address: [<000003ff7fc3e6b4>] gcm_aes_crypt+0x104/0xa68 [aes_s390]
CVE-2023-53602 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix memory leak in WMI firmware stats Memory allocated for firmware pdev, vdev and beacon statistics are not released during rmmod. Fix it by calling ath11k_fw_stats_free() function before hardware unregister. While at it, avoid calling ath11k_fw_stats_free() while processing the firmware stats received in the WMI event because the local list is getting spliced and reinitialised and hence there are no elements in the list after splicing. Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
CVE-2023-53596 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: base: Free devm resources when unregistering a device In the current code, devres_release_all() only gets called if the device has a bus and has been probed. This leads to issues when using bus-less or driver-less devices where the device might never get freed if a managed resource holds a reference to the device. This is happening in the DRM framework for example. We should thus call devres_release_all() in the device_del() function to make sure that the device-managed actions are properly executed when the device is unregistered, even if it has neither a bus nor a driver. This is effectively the same change than commit 2f8d16a996da ("devres: release resources on device_del()") that got reverted by commit a525a3ddeaca ("driver core: free devres in device_release") over memory leaks concerns. This patch effectively combines the two commits mentioned above to release the resources both on device_del() and device_release() and get the best of both worlds.
CVE-2023-53605 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: amd: display: Fix memory leakage This commit fixes memory leakage in dc_construct_ctx() function.
CVE-2023-53536 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: blk-crypto: make blk_crypto_evict_key() more robust If blk_crypto_evict_key() sees that the key is still in-use (due to a bug) or that ->keyslot_evict failed, it currently just returns while leaving the key linked into the keyslot management structures. However, blk_crypto_evict_key() is only called in contexts such as inode eviction where failure is not an option. So actually the caller proceeds with freeing the blk_crypto_key regardless of the return value of blk_crypto_evict_key(). These two assumptions don't match, and the result is that there can be a use-after-free in blk_crypto_reprogram_all_keys() after one of these errors occurs. (Note, these errors *shouldn't* happen; we're just talking about what happens if they do anyway.) Fix this by making blk_crypto_evict_key() unlink the key from the keyslot management structures even on failure. Also improve some comments.
CVE-2023-53534 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: mtk_drm_crtc: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference.