| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ip_vti: fix potential slab-use-after-free in decode_session6
When ip_vti device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when ip_vti device sends IPv6 packets.
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Make intel_get_crtc_new_encoder() less oopsy
The point of the WARN was to print something, not oops
straight up. Currently that is precisely what happens
if we can't find the connector for the crtc in the atomic
state. Get the dev pointer from the atomic state instead
of the potentially NULL encoder to avoid that.
(cherry picked from commit 3b6692357f70498f617ea1b31a0378070a0acf1c) |
| In the Linux kernel, the following vulnerability has been resolved:
clk: rs9: Fix suspend/resume
Disabling the cache in commit 2ff4ba9e3702 ("clk: rs9: Fix I2C accessors")
without removing cache synchronization in resume path results in a
kernel panic as map->cache_ops is unset, due to REGCACHE_NONE.
Enable flat cache again to support resume again. num_reg_defaults_raw
is necessary to read the cache defaults from hardware. Some registers
are strapped in hardware and cannot be provided in software. |
| In the Linux kernel, the following vulnerability has been resolved:
fprobe: Release rethook after the ftrace_ops is unregistered
While running bpf selftests it's possible to get following fault:
general protection fault, probably for non-canonical address \
0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
...
Call Trace:
<TASK>
fprobe_handler+0xc1/0x270
? __pfx_bpf_testmod_init+0x10/0x10
? __pfx_bpf_testmod_init+0x10/0x10
? bpf_fentry_test1+0x5/0x10
? bpf_fentry_test1+0x5/0x10
? bpf_testmod_init+0x22/0x80
? do_one_initcall+0x63/0x2e0
? rcu_is_watching+0xd/0x40
? kmalloc_trace+0xaf/0xc0
? do_init_module+0x60/0x250
? __do_sys_finit_module+0xac/0x120
? do_syscall_64+0x37/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
</TASK>
In unregister_fprobe function we can't release fp->rethook while it's
possible there are some of its users still running on another cpu.
Moving rethook_free call after fp->ops is unregistered with
unregister_ftrace_function call. |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Sync IRQ works before buffer destruction
If something was written to the buffer just before destruction,
it may be possible (maybe not in a real system, but it did
happen in ARCH=um with time-travel) to destroy the ringbuffer
before the IRQ work ran, leading this KASAN report (or a crash
without KASAN):
BUG: KASAN: slab-use-after-free in irq_work_run_list+0x11a/0x13a
Read of size 8 at addr 000000006d640a48 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Tainted: G W O 6.3.0-rc1 #7
Stack:
60c4f20f 0c203d48 41b58ab3 60f224fc
600477fa 60f35687 60c4f20f 601273dd
00000008 6101eb00 6101eab0 615be548
Call Trace:
[<60047a58>] show_stack+0x25e/0x282
[<60c609e0>] dump_stack_lvl+0x96/0xfd
[<60c50d4c>] print_report+0x1a7/0x5a8
[<603078d3>] kasan_report+0xc1/0xe9
[<60308950>] __asan_report_load8_noabort+0x1b/0x1d
[<60232844>] irq_work_run_list+0x11a/0x13a
[<602328b4>] irq_work_tick+0x24/0x34
[<6017f9dc>] update_process_times+0x162/0x196
[<6019f335>] tick_sched_handle+0x1a4/0x1c3
[<6019fd9e>] tick_sched_timer+0x79/0x10c
[<601812b9>] __hrtimer_run_queues.constprop.0+0x425/0x695
[<60182913>] hrtimer_interrupt+0x16c/0x2c4
[<600486a3>] um_timer+0x164/0x183
[...]
Allocated by task 411:
save_stack_trace+0x99/0xb5
stack_trace_save+0x81/0x9b
kasan_save_stack+0x2d/0x54
kasan_set_track+0x34/0x3e
kasan_save_alloc_info+0x25/0x28
____kasan_kmalloc+0x8b/0x97
__kasan_kmalloc+0x10/0x12
__kmalloc+0xb2/0xe8
load_elf_phdrs+0xee/0x182
[...]
The buggy address belongs to the object at 000000006d640800
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 584 bytes inside of
freed 1024-byte region [000000006d640800, 000000006d640c00)
Add the appropriate irq_work_sync() so the work finishes before
the buffers are destroyed.
Prior to the commit in the Fixes tag below, there was only a
single global IRQ work, so this issue didn't exist. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: do not assume skb mac_header is set
Drivers must not assume in their ndo_start_xmit() that
skbs have their mac_header set. skb->data is all what is needed.
bonding seems to be one of the last offender as caught by syzbot:
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 skb_mac_offset include/linux/skbuff.h:2913 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 __bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470
Modules linked in:
CPU: 1 PID: 12155 Comm: syz-executor.3 Not tainted 6.1.30-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/25/2023
RIP: 0010:skb_mac_header include/linux/skbuff.h:2907 [inline]
RIP: 0010:skb_mac_offset include/linux/skbuff.h:2913 [inline]
RIP: 0010:bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline]
RIP: 0010:bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline]
RIP: 0010:bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline]
RIP: 0010:__bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline]
RIP: 0010:bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470
Code: 8b 7c 24 30 e8 76 dd 1a 01 48 85 c0 74 0d 48 89 c3 e8 29 67 2e fe e9 15 ef ff ff e8 1f 67 2e fe e9 10 ef ff ff e8 15 67 2e fe <0f> 0b e9 45 f8 ff ff e8 09 67 2e fe e9 dc fa ff ff e8 ff 66 2e fe
RSP: 0018:ffffc90002fff6e0 EFLAGS: 00010283
RAX: ffffffff835874db RBX: 000000000000ffff RCX: 0000000000040000
RDX: ffffc90004dcf000 RSI: 00000000000000b5 RDI: 00000000000000b6
RBP: ffffc90002fff8b8 R08: ffffffff83586d16 R09: ffffffff83586584
R10: 0000000000000007 R11: ffff8881599fc780 R12: ffff88811b6a7b7e
R13: 1ffff110236d4f6f R14: ffff88811b6a7ac0 R15: 1ffff110236d4f76
FS: 00007f2e9eb47700(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2e421000 CR3: 000000010e6d4000 CR4: 00000000003526e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
[<ffffffff8471a49f>] netdev_start_xmit include/linux/netdevice.h:4925 [inline]
[<ffffffff8471a49f>] __dev_direct_xmit+0x4ef/0x850 net/core/dev.c:4380
[<ffffffff851d845b>] dev_direct_xmit include/linux/netdevice.h:3043 [inline]
[<ffffffff851d845b>] packet_direct_xmit+0x18b/0x300 net/packet/af_packet.c:284
[<ffffffff851c7472>] packet_snd net/packet/af_packet.c:3112 [inline]
[<ffffffff851c7472>] packet_sendmsg+0x4a22/0x64d0 net/packet/af_packet.c:3143
[<ffffffff8467a4b2>] sock_sendmsg_nosec net/socket.c:716 [inline]
[<ffffffff8467a4b2>] sock_sendmsg net/socket.c:736 [inline]
[<ffffffff8467a4b2>] __sys_sendto+0x472/0x5f0 net/socket.c:2139
[<ffffffff8467a715>] __do_sys_sendto net/socket.c:2151 [inline]
[<ffffffff8467a715>] __se_sys_sendto net/socket.c:2147 [inline]
[<ffffffff8467a715>] __x64_sys_sendto+0xe5/0x100 net/socket.c:2147
[<ffffffff8553071f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff8553071f>] do_syscall_64+0x2f/0x50 arch/x86/entry/common.c:80
[<ffffffff85600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: add a refcnt in sctp_stream_priorities to avoid a nested loop
With this refcnt added in sctp_stream_priorities, we don't need to
traverse all streams to check if the prio is used by other streams
when freeing one stream's prio in sctp_sched_prio_free_sid(). This
can avoid a nested loop (up to 65535 * 65535), which may cause a
stuck as Ying reported:
watchdog: BUG: soft lockup - CPU#23 stuck for 26s! [ksoftirqd/23:136]
Call Trace:
<TASK>
sctp_sched_prio_free_sid+0xab/0x100 [sctp]
sctp_stream_free_ext+0x64/0xa0 [sctp]
sctp_stream_free+0x31/0x50 [sctp]
sctp_association_free+0xa5/0x200 [sctp]
Note that it doesn't need to use refcount_t type for this counter,
as its accessing is always protected under the sock lock.
v1->v2:
- add a check in sctp_sched_prio_set to avoid the possible prio_head
refcnt overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix deadlock in tc route query code
Cited commit causes ABBA deadlock[0] when peer flows are created while
holding the devcom rw semaphore. Due to peer flows offload implementation
the lock is taken much higher up the call chain and there is no obvious way
to easily fix the deadlock. Instead, since tc route query code needs the
peer eswitch structure only to perform a lookup in xarray and doesn't
perform any sleeping operations with it, refactor the code for lockless
execution in following ways:
- RCUify the devcom 'data' pointer. When resetting the pointer
synchronously wait for RCU grace period before returning. This is fine
since devcom is currently only used for synchronization of
pairing/unpairing of eswitches which is rare and already expensive as-is.
- Wrap all usages of 'paired' boolean in {READ|WRITE}_ONCE(). The flag has
already been used in some unlocked contexts without proper
annotations (e.g. users of mlx5_devcom_is_paired() function), but it wasn't
an issue since all relevant code paths checked it again after obtaining the
devcom semaphore. Now it is also used by mlx5_devcom_get_peer_data_rcu() as
"best effort" check to return NULL when devcom is being unpaired. Note that
while RCU read lock doesn't prevent the unpaired flag from being changed
concurrently it still guarantees that reader can continue to use 'data'.
- Refactor mlx5e_tc_query_route_vport() function to use new
mlx5_devcom_get_peer_data_rcu() API which fixes the deadlock.
[0]:
[ 164.599612] ======================================================
[ 164.600142] WARNING: possible circular locking dependency detected
[ 164.600667] 6.3.0-rc3+ #1 Not tainted
[ 164.601021] ------------------------------------------------------
[ 164.601557] handler1/3456 is trying to acquire lock:
[ 164.601998] ffff88811f1714b0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}, at: mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core]
[ 164.603078]
but task is already holding lock:
[ 164.603617] ffff88810137fc98 (&comp->sem){++++}-{3:3}, at: mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core]
[ 164.604459]
which lock already depends on the new lock.
[ 164.605190]
the existing dependency chain (in reverse order) is:
[ 164.605848]
-> #1 (&comp->sem){++++}-{3:3}:
[ 164.606380] down_read+0x39/0x50
[ 164.606772] mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core]
[ 164.607336] mlx5e_tc_query_route_vport+0x86/0xc0 [mlx5_core]
[ 164.607914] mlx5e_tc_tun_route_lookup+0x1a4/0x1d0 [mlx5_core]
[ 164.608495] mlx5e_attach_decap_route+0xc6/0x1e0 [mlx5_core]
[ 164.609063] mlx5e_tc_add_fdb_flow+0x1ea/0x360 [mlx5_core]
[ 164.609627] __mlx5e_add_fdb_flow+0x2d2/0x430 [mlx5_core]
[ 164.610175] mlx5e_configure_flower+0x952/0x1a20 [mlx5_core]
[ 164.610741] tc_setup_cb_add+0xd4/0x200
[ 164.611146] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower]
[ 164.611661] fl_change+0xc95/0x18a0 [cls_flower]
[ 164.612116] tc_new_tfilter+0x3fc/0xd20
[ 164.612516] rtnetlink_rcv_msg+0x418/0x5b0
[ 164.612936] netlink_rcv_skb+0x54/0x100
[ 164.613339] netlink_unicast+0x190/0x250
[ 164.613746] netlink_sendmsg+0x245/0x4a0
[ 164.614150] sock_sendmsg+0x38/0x60
[ 164.614522] ____sys_sendmsg+0x1d0/0x1e0
[ 164.614934] ___sys_sendmsg+0x80/0xc0
[ 164.615320] __sys_sendmsg+0x51/0x90
[ 164.615701] do_syscall_64+0x3d/0x90
[ 164.616083] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 164.616568]
-> #0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}:
[ 164.617210] __lock_acquire+0x159e/0x26e0
[ 164.617638] lock_acquire+0xc2/0x2a0
[ 164.618018] __mutex_lock+0x92/0xcd0
[ 164.618401] mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core]
[ 164.618943] post_process_attr+0x153/0x2d0 [
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate data run offset
This adds sanity checks for data run offset. We should make sure data
run offset is legit before trying to unpack them, otherwise we may
encounter use-after-free or some unexpected memory access behaviors.
[ 82.940342] BUG: KASAN: use-after-free in run_unpack+0x2e3/0x570
[ 82.941180] Read of size 1 at addr ffff888008a8487f by task mount/240
[ 82.941670]
[ 82.942069] CPU: 0 PID: 240 Comm: mount Not tainted 5.19.0+ #15
[ 82.942482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 82.943720] Call Trace:
[ 82.944204] <TASK>
[ 82.944471] dump_stack_lvl+0x49/0x63
[ 82.944908] print_report.cold+0xf5/0x67b
[ 82.945141] ? __wait_on_bit+0x106/0x120
[ 82.945750] ? run_unpack+0x2e3/0x570
[ 82.946626] kasan_report+0xa7/0x120
[ 82.947046] ? run_unpack+0x2e3/0x570
[ 82.947280] __asan_load1+0x51/0x60
[ 82.947483] run_unpack+0x2e3/0x570
[ 82.947709] ? memcpy+0x4e/0x70
[ 82.947927] ? run_pack+0x7a0/0x7a0
[ 82.948158] run_unpack_ex+0xad/0x3f0
[ 82.948399] ? mi_enum_attr+0x14a/0x200
[ 82.948717] ? run_unpack+0x570/0x570
[ 82.949072] ? ni_enum_attr_ex+0x1b2/0x1c0
[ 82.949332] ? ni_fname_type.part.0+0xd0/0xd0
[ 82.949611] ? mi_read+0x262/0x2c0
[ 82.949970] ? ntfs_cmp_names_cpu+0x125/0x180
[ 82.950249] ntfs_iget5+0x632/0x1870
[ 82.950621] ? ntfs_get_block_bmap+0x70/0x70
[ 82.951192] ? evict+0x223/0x280
[ 82.951525] ? iput.part.0+0x286/0x320
[ 82.951969] ntfs_fill_super+0x1321/0x1e20
[ 82.952436] ? put_ntfs+0x1d0/0x1d0
[ 82.952822] ? vsprintf+0x20/0x20
[ 82.953188] ? mutex_unlock+0x81/0xd0
[ 82.953379] ? set_blocksize+0x95/0x150
[ 82.954001] get_tree_bdev+0x232/0x370
[ 82.954438] ? put_ntfs+0x1d0/0x1d0
[ 82.954700] ntfs_fs_get_tree+0x15/0x20
[ 82.955049] vfs_get_tree+0x4c/0x130
[ 82.955292] path_mount+0x645/0xfd0
[ 82.955615] ? putname+0x80/0xa0
[ 82.955955] ? finish_automount+0x2e0/0x2e0
[ 82.956310] ? kmem_cache_free+0x110/0x390
[ 82.956723] ? putname+0x80/0xa0
[ 82.957023] do_mount+0xd6/0xf0
[ 82.957411] ? path_mount+0xfd0/0xfd0
[ 82.957638] ? __kasan_check_write+0x14/0x20
[ 82.957948] __x64_sys_mount+0xca/0x110
[ 82.958310] do_syscall_64+0x3b/0x90
[ 82.958719] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 82.959341] RIP: 0033:0x7fd0d1ce948a
[ 82.960193] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 82.961532] RSP: 002b:00007ffe59ff69a8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[ 82.962527] RAX: ffffffffffffffda RBX: 0000564dcc107060 RCX: 00007fd0d1ce948a
[ 82.963266] RDX: 0000564dcc107260 RSI: 0000564dcc1072e0 RDI: 0000564dcc10fce0
[ 82.963686] RBP: 0000000000000000 R08: 0000564dcc107280 R09: 0000000000000020
[ 82.964272] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564dcc10fce0
[ 82.964785] R13: 0000564dcc107260 R14: 0000000000000000 R15: 00000000ffffffff |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: sifive: Fix refcount leak in sifive_gpio_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate-ut: Fix kernel panic when loading the driver
After loading the amd-pstate-ut driver, amd_pstate_ut_check_perf()
and amd_pstate_ut_check_freq() use cpufreq_cpu_get() to get the policy
of the CPU and mark it as busy.
In these functions, cpufreq_cpu_put() should be used to release the
policy, but it is not, so any other entity trying to access the policy
is blocked indefinitely.
One such scenario is when amd_pstate mode is changed, leading to the
following splat:
[ 1332.103727] INFO: task bash:2929 blocked for more than 120 seconds.
[ 1332.110001] Not tainted 6.5.0-rc2-amd-pstate-ut #5
[ 1332.115315] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1332.123140] task:bash state:D stack:0 pid:2929 ppid:2873 flags:0x00004006
[ 1332.123143] Call Trace:
[ 1332.123145] <TASK>
[ 1332.123148] __schedule+0x3c1/0x16a0
[ 1332.123154] ? _raw_read_lock_irqsave+0x2d/0x70
[ 1332.123157] schedule+0x6f/0x110
[ 1332.123160] schedule_timeout+0x14f/0x160
[ 1332.123162] ? preempt_count_add+0x86/0xd0
[ 1332.123165] __wait_for_common+0x92/0x190
[ 1332.123168] ? __pfx_schedule_timeout+0x10/0x10
[ 1332.123170] wait_for_completion+0x28/0x30
[ 1332.123173] cpufreq_policy_put_kobj+0x4d/0x90
[ 1332.123177] cpufreq_policy_free+0x157/0x1d0
[ 1332.123178] ? preempt_count_add+0x58/0xd0
[ 1332.123180] cpufreq_remove_dev+0xb6/0x100
[ 1332.123182] subsys_interface_unregister+0x114/0x120
[ 1332.123185] ? preempt_count_add+0x58/0xd0
[ 1332.123187] ? __pfx_amd_pstate_change_driver_mode+0x10/0x10
[ 1332.123190] cpufreq_unregister_driver+0x3b/0xd0
[ 1332.123192] amd_pstate_change_driver_mode+0x1e/0x50
[ 1332.123194] store_status+0xe9/0x180
[ 1332.123197] dev_attr_store+0x1b/0x30
[ 1332.123199] sysfs_kf_write+0x42/0x50
[ 1332.123202] kernfs_fop_write_iter+0x143/0x1d0
[ 1332.123204] vfs_write+0x2df/0x400
[ 1332.123208] ksys_write+0x6b/0xf0
[ 1332.123210] __x64_sys_write+0x1d/0x30
[ 1332.123213] do_syscall_64+0x60/0x90
[ 1332.123216] ? fpregs_assert_state_consistent+0x2e/0x50
[ 1332.123219] ? exit_to_user_mode_prepare+0x49/0x1a0
[ 1332.123223] ? irqentry_exit_to_user_mode+0xd/0x20
[ 1332.123225] ? irqentry_exit+0x3f/0x50
[ 1332.123226] ? exc_page_fault+0x8e/0x190
[ 1332.123228] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 1332.123232] RIP: 0033:0x7fa74c514a37
[ 1332.123234] RSP: 002b:00007ffe31dd0788 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 1332.123238] RAX: ffffffffffffffda RBX: 0000000000000008 RCX: 00007fa74c514a37
[ 1332.123239] RDX: 0000000000000008 RSI: 000055e27c447aa0 RDI: 0000000000000001
[ 1332.123241] RBP: 000055e27c447aa0 R08: 00007fa74c5d1460 R09: 000000007fffffff
[ 1332.123242] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000008
[ 1332.123244] R13: 00007fa74c61a780 R14: 00007fa74c616600 R15: 00007fa74c615a00
[ 1332.123247] </TASK>
Fix this by calling cpufreq_cpu_put() wherever necessary.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: delete timer and free skb queue when unloading
Fix possible crash and memory leak on driver unload by deleting
TX purge timer and freeing C2H queue in 'rtw_core_deinit()',
shrink critical section in the latter by freeing COEX queue
out of TX report lock scope. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Rework long task execution when adding/deleting entries
When adding/deleting large number of elements in one step in ipset, it can
take a reasonable amount of time and can result in soft lockup errors. The
patch 5f7b51bf09ba ("netfilter: ipset: Limit the maximal range of
consecutive elements to add/delete") tried to fix it by limiting the max
elements to process at all. However it was not enough, it is still possible
that we get hung tasks. Lowering the limit is not reasonable, so the
approach in this patch is as follows: rely on the method used at resizing
sets and save the state when we reach a smaller internal batch limit,
unlock/lock and proceed from the saved state. Thus we can avoid long
continuous tasks and at the same time removed the limit to add/delete large
number of elements in one step.
The nfnl mutex is held during the whole operation which prevents one to
issue other ipset commands in parallel. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx: scu: use _safe list iterator to avoid a use after free
This loop is freeing "clk" so it needs to use list_for_each_entry_safe().
Otherwise it dereferences a freed variable to get the next item on the
loop. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: avoid struct memcpy overrun warning
A previous patch addressed the fortified memcpy warning for most
builds, but I still see this one with gcc-9:
In file included from include/linux/string.h:254,
from drivers/hid/hid-hyperv.c:8:
In function 'fortify_memcpy_chk',
inlined from 'mousevsc_on_receive' at drivers/hid/hid-hyperv.c:272:3:
include/linux/fortify-string.h:583:4: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
583 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My guess is that the WARN_ON() itself is what confuses gcc, so it no
longer sees that there is a correct range check. Rework the code in a
way that helps readability and avoids the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix resource leak in device_add()
When calling kobject_add() failed in device_add(), it will call
cleanup_glue_dir() to free resource. But in kobject_add(),
dev->kobj.parent has been set to NULL. This will cause resource leak.
The process is as follows:
device_add()
get_device_parent()
class_dir_create_and_add()
kobject_add() //kobject_get()
...
dev->kobj.parent = kobj;
...
kobject_add() //failed, but set dev->kobj.parent = NULL
...
glue_dir = get_glue_dir(dev) //glue_dir = NULL, and goto
//"Error" label
...
cleanup_glue_dir() //becaues glue_dir is NULL, not call
//kobject_put()
The preceding problem may cause insmod mac80211_hwsim.ko to failed.
sysfs: cannot create duplicate filename '/devices/virtual/mac80211_hwsim'
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
sysfs_warn_dup.cold+0x1c/0x29
sysfs_create_dir_ns+0x224/0x280
kobject_add_internal+0x2aa/0x880
kobject_add+0x135/0x1a0
get_device_parent+0x3d7/0x590
device_add+0x2aa/0x1cb0
device_create_groups_vargs+0x1eb/0x260
device_create+0xdc/0x110
mac80211_hwsim_new_radio+0x31e/0x4790 [mac80211_hwsim]
init_mac80211_hwsim+0x48d/0x1000 [mac80211_hwsim]
do_one_initcall+0x10f/0x630
do_init_module+0x19f/0x5e0
load_module+0x64b7/0x6eb0
__do_sys_finit_module+0x140/0x200
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
kobject_add_internal failed for mac80211_hwsim with -EEXIST, don't try to
register things with the same name in the same directory. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: initialize damo_filter->list from damos_new_filter()
damos_new_filter() is not initializing the list field of newly allocated
filter object. However, DAMON sysfs interface and DAMON_RECLAIM are not
initializing it after calling damos_new_filter(). As a result, accessing
uninitialized memory is possible. Actually, adding multiple DAMOS filters
via DAMON sysfs interface caused NULL pointer dereferencing. Initialize
the field just after the allocation from damos_new_filter(). |
| In the Linux kernel, the following vulnerability has been resolved:
USB: Gadget: core: Help prevent panic during UVC unconfigure
Avichal Rakesh reported a kernel panic that occurred when the UVC
gadget driver was removed from a gadget's configuration. The panic
involves a somewhat complicated interaction between the kernel driver
and a userspace component (as described in the Link tag below), but
the analysis did make one thing clear: The Gadget core should
accomodate gadget drivers calling usb_gadget_deactivate() as part of
their unbind procedure.
Currently this doesn't work. gadget_unbind_driver() calls
driver->unbind() while holding the udc->connect_lock mutex, and
usb_gadget_deactivate() attempts to acquire that mutex, which will
result in a deadlock.
The simple fix is for gadget_unbind_driver() to release the mutex when
invoking the ->unbind() callback. There is no particular reason for
it to be holding the mutex at that time, and the mutex isn't held
while the ->bind() callback is invoked. So we'll drop the mutex
before performing the unbind callback and reacquire it afterward.
We'll also add a couple of comments to usb_gadget_activate() and
usb_gadget_deactivate(). Because they run in process context they
must not be called from a gadget driver's ->disconnect() callback,
which (according to the kerneldoc for struct usb_gadget_driver in
include/linux/usb/gadget.h) may run in interrupt context. This may
help prevent similar bugs from arising in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: mvebu: fix irq domain leak
Uwe Kleine-König pointed out we still have one resource leak in the mvebu
driver triggered on driver detach. Let's address it with a custom devm
action. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: raspberrypi-ts - fix refcount leak in rpi_ts_probe
rpi_firmware_get() take reference, we need to release it in error paths
as well. Use devm_rpi_firmware_get() helper to handling the resources.
Also remove the existing rpi_firmware_put(). |