| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: lock against ->sock changing during sysfs read
->sock can be set to NULL asynchronously unless ->recv_mutex is held.
So it is important to hold that mutex. Otherwise a sysfs read can
trigger an oops.
Commit 17f09d3f619a ("SUNRPC: Check if the xprt is connected before
handling sysfs reads") appears to attempt to fix this problem, but it
only narrows the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: bcm_sf2: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Starfighter 2 is a platform device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the bcm_sf2 switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The bcm_sf2 driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus. |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Add null pointer check in gserial_resume
Consider a case where gserial_disconnect has already cleared
gser->ioport. And if a wakeup interrupt triggers afterwards,
gserial_resume gets called, which will lead to accessing of
gser->ioport and thus causing null pointer dereference.Add
a null pointer check to prevent this.
Added a static spinlock to prevent gser->ioport from becoming
null after the newly added check. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: qup: Don't skip cleanup in remove's error path
Returning early in a platform driver's remove callback is wrong. In this
case the dma resources are not released in the error path. this is never
retried later and so this is a permanent leak. To fix this, only skip
hardware disabling if waking the device fails. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Fix pci device refcount leak in ppr_notifier()
As comment of pci_get_domain_bus_and_slot() says, it returns
a pci device with refcount increment, when finish using it,
the caller must decrement the reference count by calling
pci_dev_put(). So call it before returning from ppr_notifier()
to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_rbtree: fix null deref on element insertion
There is no guarantee that rb_prev() will not return NULL in nft_rbtree_gc_elem():
general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
nft_add_set_elem+0x14b0/0x2990
nf_tables_newsetelem+0x528/0xb30
Furthermore, there is a possible use-after-free while iterating,
'node' can be free'd so we need to cache the next value to use. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate: fix global sysfs attribute type
In commit 3666062b87ec ("cpufreq: amd-pstate: move to use bus_get_dev_root()")
the "amd_pstate" attributes where moved from a dedicated kobject to the
cpu root kobject.
While the dedicated kobject expects to contain kobj_attributes the root
kobject needs device_attributes.
As the changed arguments are not used by the callbacks it works most of
the time.
However CFI will detect this issue:
[ 4947.849350] CFI failure at dev_attr_show+0x24/0x60 (target: show_status+0x0/0x70; expected type: 0x8651b1de)
...
[ 4947.849409] Call Trace:
[ 4947.849410] <TASK>
[ 4947.849411] ? __warn+0xcf/0x1c0
[ 4947.849414] ? dev_attr_show+0x24/0x60
[ 4947.849415] ? report_cfi_failure+0x4e/0x60
[ 4947.849417] ? handle_cfi_failure+0x14c/0x1d0
[ 4947.849419] ? __cfi_show_status+0x10/0x10
[ 4947.849420] ? handle_bug+0x4f/0x90
[ 4947.849421] ? exc_invalid_op+0x1a/0x60
[ 4947.849422] ? asm_exc_invalid_op+0x1a/0x20
[ 4947.849424] ? __cfi_show_status+0x10/0x10
[ 4947.849425] ? dev_attr_show+0x24/0x60
[ 4947.849426] sysfs_kf_seq_show+0xa6/0x110
[ 4947.849433] seq_read_iter+0x16c/0x4b0
[ 4947.849436] vfs_read+0x272/0x2d0
[ 4947.849438] ksys_read+0x72/0xe0
[ 4947.849439] do_syscall_64+0x76/0xb0
[ 4947.849440] ? do_user_addr_fault+0x252/0x650
[ 4947.849442] ? exc_page_fault+0x7a/0x1b0
[ 4947.849443] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate data run offset
This adds sanity checks for data run offset. We should make sure data
run offset is legit before trying to unpack them, otherwise we may
encounter use-after-free or some unexpected memory access behaviors.
[ 82.940342] BUG: KASAN: use-after-free in run_unpack+0x2e3/0x570
[ 82.941180] Read of size 1 at addr ffff888008a8487f by task mount/240
[ 82.941670]
[ 82.942069] CPU: 0 PID: 240 Comm: mount Not tainted 5.19.0+ #15
[ 82.942482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 82.943720] Call Trace:
[ 82.944204] <TASK>
[ 82.944471] dump_stack_lvl+0x49/0x63
[ 82.944908] print_report.cold+0xf5/0x67b
[ 82.945141] ? __wait_on_bit+0x106/0x120
[ 82.945750] ? run_unpack+0x2e3/0x570
[ 82.946626] kasan_report+0xa7/0x120
[ 82.947046] ? run_unpack+0x2e3/0x570
[ 82.947280] __asan_load1+0x51/0x60
[ 82.947483] run_unpack+0x2e3/0x570
[ 82.947709] ? memcpy+0x4e/0x70
[ 82.947927] ? run_pack+0x7a0/0x7a0
[ 82.948158] run_unpack_ex+0xad/0x3f0
[ 82.948399] ? mi_enum_attr+0x14a/0x200
[ 82.948717] ? run_unpack+0x570/0x570
[ 82.949072] ? ni_enum_attr_ex+0x1b2/0x1c0
[ 82.949332] ? ni_fname_type.part.0+0xd0/0xd0
[ 82.949611] ? mi_read+0x262/0x2c0
[ 82.949970] ? ntfs_cmp_names_cpu+0x125/0x180
[ 82.950249] ntfs_iget5+0x632/0x1870
[ 82.950621] ? ntfs_get_block_bmap+0x70/0x70
[ 82.951192] ? evict+0x223/0x280
[ 82.951525] ? iput.part.0+0x286/0x320
[ 82.951969] ntfs_fill_super+0x1321/0x1e20
[ 82.952436] ? put_ntfs+0x1d0/0x1d0
[ 82.952822] ? vsprintf+0x20/0x20
[ 82.953188] ? mutex_unlock+0x81/0xd0
[ 82.953379] ? set_blocksize+0x95/0x150
[ 82.954001] get_tree_bdev+0x232/0x370
[ 82.954438] ? put_ntfs+0x1d0/0x1d0
[ 82.954700] ntfs_fs_get_tree+0x15/0x20
[ 82.955049] vfs_get_tree+0x4c/0x130
[ 82.955292] path_mount+0x645/0xfd0
[ 82.955615] ? putname+0x80/0xa0
[ 82.955955] ? finish_automount+0x2e0/0x2e0
[ 82.956310] ? kmem_cache_free+0x110/0x390
[ 82.956723] ? putname+0x80/0xa0
[ 82.957023] do_mount+0xd6/0xf0
[ 82.957411] ? path_mount+0xfd0/0xfd0
[ 82.957638] ? __kasan_check_write+0x14/0x20
[ 82.957948] __x64_sys_mount+0xca/0x110
[ 82.958310] do_syscall_64+0x3b/0x90
[ 82.958719] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 82.959341] RIP: 0033:0x7fd0d1ce948a
[ 82.960193] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 82.961532] RSP: 002b:00007ffe59ff69a8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[ 82.962527] RAX: ffffffffffffffda RBX: 0000564dcc107060 RCX: 00007fd0d1ce948a
[ 82.963266] RDX: 0000564dcc107260 RSI: 0000564dcc1072e0 RDI: 0000564dcc10fce0
[ 82.963686] RBP: 0000000000000000 R08: 0000564dcc107280 R09: 0000000000000020
[ 82.964272] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564dcc10fce0
[ 82.964785] R13: 0000564dcc107260 R14: 0000000000000000 R15: 00000000ffffffff |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check for probe() id argument being NULL
The probe() id argument may be NULL in 2 scenarios:
1. brcmf_pcie_pm_leave_D3() calling brcmf_pcie_probe() to reprobe
the device.
2. If a user tries to manually bind the driver from sysfs then the sdio /
pcie / usb probe() function gets called with NULL as id argument.
1. Is being hit by users causing the following oops on resume and causing
wifi to stop working:
BUG: kernel NULL pointer dereference, address: 0000000000000018
<snip>
Hardware name: Dell Inc. XPS 13 9350/0PWNCR, BIDS 1.13.0 02/10/2020
Workgueue: events_unbound async_run_entry_fn
RIP: 0010:brcmf_pcie_probe+Ox16b/0x7a0 [brcmfmac]
<snip>
Call Trace:
<TASK>
brcmf_pcie_pm_leave_D3+0xc5/8x1a0 [brcmfmac be3b4cefca451e190fa35be8f00db1bbec293887]
? pci_pm_resume+0x5b/0xf0
? pci_legacy_resume+0x80/0x80
dpm_run_callback+0x47/0x150
device_resume+0xa2/0x1f0
async_resume+0x1d/0x30
<snip>
Fix this by checking for id being NULL.
In the PCI and USB cases try a manual lookup of the id so that manually
binding the driver through sysfs and more importantly brcmf_pcie_probe()
on resume will work.
For the SDIO case there is no helper to do a manual sdio_device_id lookup,
so just directly error out on a NULL id there. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix vram leak on bind errors
Make sure to release the VRAM buffer also in a case a subcomponent fails
to bind.
Patchwork: https://patchwork.freedesktop.org/patch/525094/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: mark requests for GuC virtual engines to avoid use-after-free
References to i915_requests may be trapped by userspace inside a
sync_file or dmabuf (dma-resv) and held indefinitely across different
proceses. To counter-act the memory leaks, we try to not to keep
references from the request past their completion.
On the other side on fence release we need to know if rq->engine
is valid and points to hw engine (true for non-virtual requests).
To make it possible extra bit has been added to rq->execution_mask,
for marking virtual engines.
(cherry picked from commit 280410677af763f3871b93e794a199cfcf6fb580) |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix incomplete state save in rxe_requester
If a send packet is dropped by the IP layer in rxe_requester()
the call to rxe_xmit_packet() can fail with err == -EAGAIN.
To recover, the state of the wqe is restored to the state before
the packet was sent so it can be resent. However, the routines
that save and restore the state miss a significnt part of the
variable state in the wqe, the dma struct which is used to process
through the sge table. And, the state is not saved before the packet
is built which modifies the dma struct.
Under heavy stress testing with many QPs on a fast node sending
large messages to a slow node dropped packets are observed and
the resent packets are corrupted because the dma struct was not
restored. This patch fixes this behavior and allows the test cases
to succeed. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: ks7010: potential buffer overflow in ks_wlan_set_encode_ext()
The "exc->key_len" is a u16 that comes from the user. If it's over
IW_ENCODING_TOKEN_MAX (64) that could lead to memory corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: rs9: Fix suspend/resume
Disabling the cache in commit 2ff4ba9e3702 ("clk: rs9: Fix I2C accessors")
without removing cache synchronization in resume path results in a
kernel panic as map->cache_ops is unset, due to REGCACHE_NONE.
Enable flat cache again to support resume again. num_reg_defaults_raw
is necessary to read the cache defaults from hardware. Some registers
are strapped in hardware and cannot be provided in software. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Make intel_get_crtc_new_encoder() less oopsy
The point of the WARN was to print something, not oops
straight up. Currently that is precisely what happens
if we can't find the connector for the crtc in the atomic
state. Get the dev pointer from the atomic state instead
of the potentially NULL encoder to avoid that.
(cherry picked from commit 3b6692357f70498f617ea1b31a0378070a0acf1c) |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Check for NOT_READY flag state after locking
Currently the check for NOT_READY flag is performed before obtaining the
necessary lock. This opens a possibility for race condition when the flow
is concurrently removed from unready_flows list by the workqueue task,
which causes a double-removal from the list and a crash[0]. Fix the issue
by moving the flag check inside the section protected by
uplink_priv->unready_flows_lock mutex.
[0]:
[44376.389654] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] SMP
[44376.391665] CPU: 7 PID: 59123 Comm: tc Not tainted 6.4.0-rc4+ #1
[44376.392984] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[44376.395342] RIP: 0010:mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core]
[44376.396857] Code: 00 48 8b b8 68 ce 02 00 e8 8a 4d 02 00 4c 8d a8 a8 01 00 00 4c 89 ef e8 8b 79 88 e1 48 8b 83 98 06 00 00 48 8b 93 90 06 00 00 <48> 89 42 08 48 89 10 48 b8 00 01 00 00 00 00 ad de 48 89 83 90 06
[44376.399167] RSP: 0018:ffff88812cc97570 EFLAGS: 00010246
[44376.399680] RAX: dead000000000122 RBX: ffff8881088e3800 RCX: ffff8881881bac00
[44376.400337] RDX: dead000000000100 RSI: ffff88812cc97500 RDI: ffff8881242f71b0
[44376.401001] RBP: ffff88811cbb0940 R08: 0000000000000400 R09: 0000000000000001
[44376.401663] R10: 0000000000000001 R11: 0000000000000000 R12: ffff88812c944000
[44376.402342] R13: ffff8881242f71a8 R14: ffff8881222b4000 R15: 0000000000000000
[44376.402999] FS: 00007f0451104800(0000) GS:ffff88852cb80000(0000) knlGS:0000000000000000
[44376.403787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[44376.404343] CR2: 0000000000489108 CR3: 0000000123a79003 CR4: 0000000000370ea0
[44376.405004] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[44376.405665] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[44376.406339] Call Trace:
[44376.406651] <TASK>
[44376.406939] ? die_addr+0x33/0x90
[44376.407311] ? exc_general_protection+0x192/0x390
[44376.407795] ? asm_exc_general_protection+0x22/0x30
[44376.408292] ? mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core]
[44376.408876] __mlx5e_tc_del_fdb_peer_flow+0xbc/0xe0 [mlx5_core]
[44376.409482] mlx5e_tc_del_flow+0x42/0x210 [mlx5_core]
[44376.410055] mlx5e_flow_put+0x25/0x50 [mlx5_core]
[44376.410529] mlx5e_delete_flower+0x24b/0x350 [mlx5_core]
[44376.411043] tc_setup_cb_reoffload+0x22/0x80
[44376.411462] fl_reoffload+0x261/0x2f0 [cls_flower]
[44376.411907] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core]
[44376.412481] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core]
[44376.413044] tcf_block_playback_offloads+0x76/0x170
[44376.413497] tcf_block_unbind+0x7b/0xd0
[44376.413881] tcf_block_setup+0x17d/0x1c0
[44376.414269] tcf_block_offload_cmd.isra.0+0xf1/0x130
[44376.414725] tcf_block_offload_unbind+0x43/0x70
[44376.415153] __tcf_block_put+0x82/0x150
[44376.415532] ingress_destroy+0x22/0x30 [sch_ingress]
[44376.415986] qdisc_destroy+0x3b/0xd0
[44376.416343] qdisc_graft+0x4d0/0x620
[44376.416706] tc_get_qdisc+0x1c9/0x3b0
[44376.417074] rtnetlink_rcv_msg+0x29c/0x390
[44376.419978] ? rep_movs_alternative+0x3a/0xa0
[44376.420399] ? rtnl_calcit.isra.0+0x120/0x120
[44376.420813] netlink_rcv_skb+0x54/0x100
[44376.421192] netlink_unicast+0x1f6/0x2c0
[44376.421573] netlink_sendmsg+0x232/0x4a0
[44376.421980] sock_sendmsg+0x38/0x60
[44376.422328] ____sys_sendmsg+0x1d0/0x1e0
[44376.422709] ? copy_msghdr_from_user+0x6d/0xa0
[44376.423127] ___sys_sendmsg+0x80/0xc0
[44376.423495] ? ___sys_recvmsg+0x8b/0xc0
[44376.423869] __sys_sendmsg+0x51/0x90
[44376.424226] do_syscall_64+0x3d/0x90
[44376.424587] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[44376.425046] RIP: 0033:0x7f045134f887
[44376.425403] Code: 0a 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b9 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate-ut: Fix kernel panic when loading the driver
After loading the amd-pstate-ut driver, amd_pstate_ut_check_perf()
and amd_pstate_ut_check_freq() use cpufreq_cpu_get() to get the policy
of the CPU and mark it as busy.
In these functions, cpufreq_cpu_put() should be used to release the
policy, but it is not, so any other entity trying to access the policy
is blocked indefinitely.
One such scenario is when amd_pstate mode is changed, leading to the
following splat:
[ 1332.103727] INFO: task bash:2929 blocked for more than 120 seconds.
[ 1332.110001] Not tainted 6.5.0-rc2-amd-pstate-ut #5
[ 1332.115315] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1332.123140] task:bash state:D stack:0 pid:2929 ppid:2873 flags:0x00004006
[ 1332.123143] Call Trace:
[ 1332.123145] <TASK>
[ 1332.123148] __schedule+0x3c1/0x16a0
[ 1332.123154] ? _raw_read_lock_irqsave+0x2d/0x70
[ 1332.123157] schedule+0x6f/0x110
[ 1332.123160] schedule_timeout+0x14f/0x160
[ 1332.123162] ? preempt_count_add+0x86/0xd0
[ 1332.123165] __wait_for_common+0x92/0x190
[ 1332.123168] ? __pfx_schedule_timeout+0x10/0x10
[ 1332.123170] wait_for_completion+0x28/0x30
[ 1332.123173] cpufreq_policy_put_kobj+0x4d/0x90
[ 1332.123177] cpufreq_policy_free+0x157/0x1d0
[ 1332.123178] ? preempt_count_add+0x58/0xd0
[ 1332.123180] cpufreq_remove_dev+0xb6/0x100
[ 1332.123182] subsys_interface_unregister+0x114/0x120
[ 1332.123185] ? preempt_count_add+0x58/0xd0
[ 1332.123187] ? __pfx_amd_pstate_change_driver_mode+0x10/0x10
[ 1332.123190] cpufreq_unregister_driver+0x3b/0xd0
[ 1332.123192] amd_pstate_change_driver_mode+0x1e/0x50
[ 1332.123194] store_status+0xe9/0x180
[ 1332.123197] dev_attr_store+0x1b/0x30
[ 1332.123199] sysfs_kf_write+0x42/0x50
[ 1332.123202] kernfs_fop_write_iter+0x143/0x1d0
[ 1332.123204] vfs_write+0x2df/0x400
[ 1332.123208] ksys_write+0x6b/0xf0
[ 1332.123210] __x64_sys_write+0x1d/0x30
[ 1332.123213] do_syscall_64+0x60/0x90
[ 1332.123216] ? fpregs_assert_state_consistent+0x2e/0x50
[ 1332.123219] ? exit_to_user_mode_prepare+0x49/0x1a0
[ 1332.123223] ? irqentry_exit_to_user_mode+0xd/0x20
[ 1332.123225] ? irqentry_exit+0x3f/0x50
[ 1332.123226] ? exc_page_fault+0x8e/0x190
[ 1332.123228] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 1332.123232] RIP: 0033:0x7fa74c514a37
[ 1332.123234] RSP: 002b:00007ffe31dd0788 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 1332.123238] RAX: ffffffffffffffda RBX: 0000000000000008 RCX: 00007fa74c514a37
[ 1332.123239] RDX: 0000000000000008 RSI: 000055e27c447aa0 RDI: 0000000000000001
[ 1332.123241] RBP: 000055e27c447aa0 R08: 00007fa74c5d1460 R09: 000000007fffffff
[ 1332.123242] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000008
[ 1332.123244] R13: 00007fa74c61a780 R14: 00007fa74c616600 R15: 00007fa74c615a00
[ 1332.123247] </TASK>
Fix this by calling cpufreq_cpu_put() wherever necessary.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/histograms: Add histograms to hist_vars if they have referenced variables
Hist triggers can have referenced variables without having direct
variables fields. This can be the case if referenced variables are added
for trigger actions. In this case the newly added references will not
have field variables. Not taking such referenced variables into
consideration can result in a bug where it would be possible to remove
hist trigger with variables being refenced. This will result in a bug
that is easily reproducable like so
$ cd /sys/kernel/tracing
$ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events
$ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
$ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger
$ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
[ 100.263533] ==================================================================
[ 100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180
[ 100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439
[ 100.266320]
[ 100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4
[ 100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[ 100.268561] Call Trace:
[ 100.268902] <TASK>
[ 100.269189] dump_stack_lvl+0x4c/0x70
[ 100.269680] print_report+0xc5/0x600
[ 100.270165] ? resolve_var_refs+0xc7/0x180
[ 100.270697] ? kasan_complete_mode_report_info+0x80/0x1f0
[ 100.271389] ? resolve_var_refs+0xc7/0x180
[ 100.271913] kasan_report+0xbd/0x100
[ 100.272380] ? resolve_var_refs+0xc7/0x180
[ 100.272920] __asan_load8+0x71/0xa0
[ 100.273377] resolve_var_refs+0xc7/0x180
[ 100.273888] event_hist_trigger+0x749/0x860
[ 100.274505] ? kasan_save_stack+0x2a/0x50
[ 100.275024] ? kasan_set_track+0x29/0x40
[ 100.275536] ? __pfx_event_hist_trigger+0x10/0x10
[ 100.276138] ? ksys_write+0xd1/0x170
[ 100.276607] ? do_syscall_64+0x3c/0x90
[ 100.277099] ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.277771] ? destroy_hist_data+0x446/0x470
[ 100.278324] ? event_hist_trigger_parse+0xa6c/0x3860
[ 100.278962] ? __pfx_event_hist_trigger_parse+0x10/0x10
[ 100.279627] ? __kasan_check_write+0x18/0x20
[ 100.280177] ? mutex_unlock+0x85/0xd0
[ 100.280660] ? __pfx_mutex_unlock+0x10/0x10
[ 100.281200] ? kfree+0x7b/0x120
[ 100.281619] ? ____kasan_slab_free+0x15d/0x1d0
[ 100.282197] ? event_trigger_write+0xac/0x100
[ 100.282764] ? __kasan_slab_free+0x16/0x20
[ 100.283293] ? __kmem_cache_free+0x153/0x2f0
[ 100.283844] ? sched_mm_cid_remote_clear+0xb1/0x250
[ 100.284550] ? __pfx_sched_mm_cid_remote_clear+0x10/0x10
[ 100.285221] ? event_trigger_write+0xbc/0x100
[ 100.285781] ? __kasan_check_read+0x15/0x20
[ 100.286321] ? __bitmap_weight+0x66/0xa0
[ 100.286833] ? _find_next_bit+0x46/0xe0
[ 100.287334] ? task_mm_cid_work+0x37f/0x450
[ 100.287872] event_triggers_call+0x84/0x150
[ 100.288408] trace_event_buffer_commit+0x339/0x430
[ 100.289073] ? ring_buffer_event_data+0x3f/0x60
[ 100.292189] trace_event_raw_event_sys_enter+0x8b/0xe0
[ 100.295434] syscall_trace_enter.constprop.0+0x18f/0x1b0
[ 100.298653] syscall_enter_from_user_mode+0x32/0x40
[ 100.301808] do_syscall_64+0x1a/0x90
[ 100.304748] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.307775] RIP: 0033:0x7f686c75c1cb
[ 100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48
[ 100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021
[ 100.321200] RA
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: do not assume skb mac_header is set
Drivers must not assume in their ndo_start_xmit() that
skbs have their mac_header set. skb->data is all what is needed.
bonding seems to be one of the last offender as caught by syzbot:
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 skb_mac_offset include/linux/skbuff.h:2913 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 __bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470
Modules linked in:
CPU: 1 PID: 12155 Comm: syz-executor.3 Not tainted 6.1.30-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/25/2023
RIP: 0010:skb_mac_header include/linux/skbuff.h:2907 [inline]
RIP: 0010:skb_mac_offset include/linux/skbuff.h:2913 [inline]
RIP: 0010:bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline]
RIP: 0010:bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline]
RIP: 0010:bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline]
RIP: 0010:__bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline]
RIP: 0010:bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470
Code: 8b 7c 24 30 e8 76 dd 1a 01 48 85 c0 74 0d 48 89 c3 e8 29 67 2e fe e9 15 ef ff ff e8 1f 67 2e fe e9 10 ef ff ff e8 15 67 2e fe <0f> 0b e9 45 f8 ff ff e8 09 67 2e fe e9 dc fa ff ff e8 ff 66 2e fe
RSP: 0018:ffffc90002fff6e0 EFLAGS: 00010283
RAX: ffffffff835874db RBX: 000000000000ffff RCX: 0000000000040000
RDX: ffffc90004dcf000 RSI: 00000000000000b5 RDI: 00000000000000b6
RBP: ffffc90002fff8b8 R08: ffffffff83586d16 R09: ffffffff83586584
R10: 0000000000000007 R11: ffff8881599fc780 R12: ffff88811b6a7b7e
R13: 1ffff110236d4f6f R14: ffff88811b6a7ac0 R15: 1ffff110236d4f76
FS: 00007f2e9eb47700(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2e421000 CR3: 000000010e6d4000 CR4: 00000000003526e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
[<ffffffff8471a49f>] netdev_start_xmit include/linux/netdevice.h:4925 [inline]
[<ffffffff8471a49f>] __dev_direct_xmit+0x4ef/0x850 net/core/dev.c:4380
[<ffffffff851d845b>] dev_direct_xmit include/linux/netdevice.h:3043 [inline]
[<ffffffff851d845b>] packet_direct_xmit+0x18b/0x300 net/packet/af_packet.c:284
[<ffffffff851c7472>] packet_snd net/packet/af_packet.c:3112 [inline]
[<ffffffff851c7472>] packet_sendmsg+0x4a22/0x64d0 net/packet/af_packet.c:3143
[<ffffffff8467a4b2>] sock_sendmsg_nosec net/socket.c:716 [inline]
[<ffffffff8467a4b2>] sock_sendmsg net/socket.c:736 [inline]
[<ffffffff8467a4b2>] __sys_sendto+0x472/0x5f0 net/socket.c:2139
[<ffffffff8467a715>] __do_sys_sendto net/socket.c:2151 [inline]
[<ffffffff8467a715>] __se_sys_sendto net/socket.c:2147 [inline]
[<ffffffff8467a715>] __x64_sys_sendto+0xe5/0x100 net/socket.c:2147
[<ffffffff8553071f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff8553071f>] do_syscall_64+0x2f/0x50 arch/x86/entry/common.c:80
[<ffffffff85600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |