| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix input validation logic for action_meta
Fix condition to check 'greater or equal' to prevent OOB dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
can: hi311x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the sun4i_can driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, hi3110_hard_start_xmit() receives a CAN XL frame which it is
not able to correctly handle and will thus misinterpret it as a CAN
frame. The driver will consume frame->len as-is with no further
checks.
This can result in a buffer overflow later on in hi3110_hw_tx() on
this line:
memcpy(buf + HI3110_FIFO_EXT_DATA_OFF,
frame->data, frame->len);
Here, frame->len corresponds to the flags field of the CAN XL frame.
In our previous example, we set canxl_frame->flags to 0xff. Because
the maximum expected length is 8, a buffer overflow of 247 bytes
occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
futex: Prevent use-after-free during requeue-PI
syzbot managed to trigger the following race:
T1 T2
futex_wait_requeue_pi()
futex_do_wait()
schedule()
futex_requeue()
futex_proxy_trylock_atomic()
futex_requeue_pi_prepare()
requeue_pi_wake_futex()
futex_requeue_pi_complete()
/* preempt */
* timeout/ signal wakes T1 *
futex_requeue_pi_wakeup_sync() // Q_REQUEUE_PI_LOCKED
futex_hash_put()
// back to userland, on stack futex_q is garbage
/* back */
wake_up_state(q->task, TASK_NORMAL);
In this scenario futex_wait_requeue_pi() is able to leave without using
futex_q::lock_ptr for synchronization.
This can be prevented by reading futex_q::task before updating the
futex_q::requeue_state. A reference on the task_struct is not needed
because requeue_pi_wake_futex() is invoked with a spinlock_t held which
implies a RCU read section.
Even if T1 terminates immediately after, the task_struct will remain valid
during T2's wake_up_state(). A READ_ONCE on futex_q::task before
futex_requeue_pi_complete() is enough because it ensures that the variable
is read before the state is updated.
Read futex_q::task before updating the requeue state, use it for the
following wakeup. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix idx validation in i40e_validate_queue_map
Ensure idx is within range of active/initialized TCs when iterating over
vf->ch[idx] in i40e_validate_queue_map(). |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Fix UAF in hci_acl_create_conn_sync
This fixes the following UFA in hci_acl_create_conn_sync where a
connection still pending is command submission (conn->state == BT_OPEN)
maybe freed, also since this also can happen with the likes of
hci_le_create_conn_sync fix it as well:
BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541
CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci3 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x230 mm/kasan/report.c:480
kasan_report+0x118/0x150 mm/kasan/report.c:593
hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 123736:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
__hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline]
hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634
pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:727
sock_write_iter+0x258/0x330 net/socket.c:1131
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x54b/0xa90 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 103680:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4643 [inline]
kfree+0x18e/0x440 mm/slub.c:4842
device_release+0x9c/0x1c0
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x22b/0x480 lib/kobject.c:737
hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
hci_event_func net/bluetooth/hci_event.c:7477 [inline]
hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/sour
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix fault on fd close after unbind
If userspace holds an fd open, unbinds the device and then closes it,
the driver shouldn't try to access the hardware. Protect it by using
drm_dev_enter()/drm_dev_exit(). This fixes the following page fault:
<6> [IGT] xe_wedged: exiting, ret=98
<1> BUG: unable to handle page fault for address: ffffc901bc5e508c
<1> #PF: supervisor read access in kernel mode
<1> #PF: error_code(0x0000) - not-present page
...
<4> xe_lrc_update_timestamp+0x1c/0xd0 [xe]
<4> xe_exec_queue_update_run_ticks+0x50/0xb0 [xe]
<4> xe_exec_queue_fini+0x16/0xb0 [xe]
<4> __guc_exec_queue_fini_async+0xc4/0x190 [xe]
<4> guc_exec_queue_fini_async+0xa0/0xe0 [xe]
<4> guc_exec_queue_fini+0x23/0x40 [xe]
<4> xe_exec_queue_destroy+0xb3/0xf0 [xe]
<4> xe_file_close+0xd4/0x1a0 [xe]
<4> drm_file_free+0x210/0x280 [drm]
<4> drm_close_helper.isra.0+0x6d/0x80 [drm]
<4> drm_release_noglobal+0x20/0x90 [drm]
(cherry picked from commit 4ca1fd418338d4d135428a0eb1e16e3b3ce17ee8) |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: sof_sdw: Add space for a terminator into DAIs array
The code uses the initialised member of the asoc_sdw_dailink struct to
determine if a member of the array is in use. However in the case the
array is completely full this will lead to an access 1 past the end of
the array, expand the array by one entry to include a space for a
terminator. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: iso: Always release hdev at the end of iso_listen_bis
Since hci_get_route holds the device before returning, the hdev
should be released with hci_dev_put at the end of iso_listen_bis
even if the function returns with an error. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "readahead: properly shorten readahead when falling back to do_page_cache_ra()"
This reverts commit 7c877586da3178974a8a94577b6045a48377ff25.
Anders and Philippe have reported that recent kernels occasionally hang
when used with NFS in readahead code. The problem has been bisected to
7c877586da3 ("readahead: properly shorten readahead when falling back to
do_page_cache_ra()"). The cause of the problem is that ra->size can be
shrunk by read_pages() call and subsequently we end up calling
do_page_cache_ra() with negative (read huge positive) number of pages.
Let's revert 7c877586da3 for now until we can find a proper way how the
logic in read_pages() and page_cache_ra_order() can coexist. This can
lead to reduced readahead throughput due to readahead window confusion but
that's better than outright hangs. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix invalid irq restore in scx_ops_bypass()
While adding outer irqsave/restore locking, 0e7ffff1b811 ("scx: Fix raciness
in scx_ops_bypass()") forgot to convert an inner rq_unlock_irqrestore() to
rq_unlock() which could re-enable IRQ prematurely leading to the following
warning:
raw_local_irq_restore() called with IRQs enabled
WARNING: CPU: 1 PID: 96 at kernel/locking/irqflag-debug.c:10 warn_bogus_irq_restore+0x30/0x40
...
Sched_ext: create_dsq (enabling)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : warn_bogus_irq_restore+0x30/0x40
lr : warn_bogus_irq_restore+0x30/0x40
...
Call trace:
warn_bogus_irq_restore+0x30/0x40 (P)
warn_bogus_irq_restore+0x30/0x40 (L)
scx_ops_bypass+0x224/0x3b8
scx_ops_enable.isra.0+0x2c8/0xaa8
bpf_scx_reg+0x18/0x30
...
irq event stamp: 33739
hardirqs last enabled at (33739): [<ffff8000800b699c>] scx_ops_bypass+0x174/0x3b8
hardirqs last disabled at (33738): [<ffff800080d48ad4>] _raw_spin_lock_irqsave+0xb4/0xd8
Drop the stray _irqrestore(). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Do not release the link DMA on STOP
The linkDMA should not be released on stop trigger since a stream re-start
might happen without closing of the stream. This leaves a short time for
other streams to 'steal' the linkDMA since it has been released.
This issue is not easy to reproduce under normal conditions as usually
after stop the stream is closed, or the same stream is restarted, but if
another stream got in between the stop and start, like this:
aplay -Dhw:0,3 -c2 -r48000 -fS32_LE /dev/zero -d 120
CTRL+z
aplay -Dhw:0,0 -c2 -r48000 -fS32_LE /dev/zero -d 120
then the link DMA channels will be mixed up, resulting firmware error or
crash. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix corrupt config pages PHY state is switched in sysfs
The driver, through the SAS transport, exposes a sysfs interface to
enable/disable PHYs in a controller/expander setup. When multiple PHYs
are disabled and enabled in rapid succession, the persistent and current
config pages related to SAS IO unit/SAS Expander pages could get
corrupted.
Use separate memory for each config request. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix page fault due to max surface definition mismatch
DC driver is using two different values to define the maximum number of
surfaces: MAX_SURFACES and MAX_SURFACE_NUM. Consolidate MAX_SURFACES as
the unique definition for surface updates across DC.
It fixes page fault faced by Cosmic users on AMD display versions that
support two overlay planes, since the introduction of cursor overlay
mode.
[Nov26 21:33] BUG: unable to handle page fault for address: 0000000051d0f08b
[ +0.000015] #PF: supervisor read access in kernel mode
[ +0.000006] #PF: error_code(0x0000) - not-present page
[ +0.000005] PGD 0 P4D 0
[ +0.000007] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
[ +0.000006] CPU: 4 PID: 71 Comm: kworker/u32:6 Not tainted 6.10.0+ #300
[ +0.000006] Hardware name: Valve Jupiter/Jupiter, BIOS F7A0131 01/30/2024
[ +0.000007] Workqueue: events_unbound commit_work [drm_kms_helper]
[ +0.000040] RIP: 0010:copy_stream_update_to_stream.isra.0+0x30d/0x750 [amdgpu]
[ +0.000847] Code: 8b 10 49 89 94 24 f8 00 00 00 48 8b 50 08 49 89 94 24 00 01 00 00 8b 40 10 41 89 84 24 08 01 00 00 49 8b 45 78 48 85 c0 74 0b <0f> b6 00 41 88 84 24 90 64 00 00 49 8b 45 60 48 85 c0 74 3b 48 8b
[ +0.000010] RSP: 0018:ffffc203802f79a0 EFLAGS: 00010206
[ +0.000009] RAX: 0000000051d0f08b RBX: 0000000000000004 RCX: ffff9f964f0a8070
[ +0.000004] RDX: ffff9f9710f90e40 RSI: ffff9f96600c8000 RDI: ffff9f964f000000
[ +0.000004] RBP: ffffc203802f79f8 R08: 0000000000000000 R09: 0000000000000000
[ +0.000005] R10: 0000000000000000 R11: 0000000000000000 R12: ffff9f96600c8000
[ +0.000004] R13: ffff9f9710f90e40 R14: ffff9f964f000000 R15: ffff9f96600c8000
[ +0.000004] FS: 0000000000000000(0000) GS:ffff9f9970000000(0000) knlGS:0000000000000000
[ +0.000005] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000005] CR2: 0000000051d0f08b CR3: 00000002e6a20000 CR4: 0000000000350ef0
[ +0.000005] Call Trace:
[ +0.000011] <TASK>
[ +0.000010] ? __die_body.cold+0x19/0x27
[ +0.000012] ? page_fault_oops+0x15a/0x2d0
[ +0.000014] ? exc_page_fault+0x7e/0x180
[ +0.000009] ? asm_exc_page_fault+0x26/0x30
[ +0.000013] ? copy_stream_update_to_stream.isra.0+0x30d/0x750 [amdgpu]
[ +0.000739] ? dc_commit_state_no_check+0xd6c/0xe70 [amdgpu]
[ +0.000470] update_planes_and_stream_state+0x49b/0x4f0 [amdgpu]
[ +0.000450] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? commit_minimal_transition_state+0x239/0x3d0 [amdgpu]
[ +0.000446] update_planes_and_stream_v2+0x24a/0x590 [amdgpu]
[ +0.000464] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? sort+0x31/0x50
[ +0.000007] ? amdgpu_dm_atomic_commit_tail+0x159f/0x3a30 [amdgpu]
[ +0.000508] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? amdgpu_crtc_get_scanout_position+0x28/0x40 [amdgpu]
[ +0.000377] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? drm_crtc_vblank_helper_get_vblank_timestamp_internal+0x160/0x390 [drm]
[ +0.000058] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? dma_fence_default_wait+0x8c/0x260
[ +0.000010] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? wait_for_completion_timeout+0x13b/0x170
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? dma_fence_wait_timeout+0x108/0x140
[ +0.000010] ? commit_tail+0x94/0x130 [drm_kms_helper]
[ +0.000024] ? process_one_work+0x177/0x330
[ +0.000008] ? worker_thread+0x266/0x3a0
[ +0.000006] ? __pfx_worker_thread+0x10/0x10
[ +0.000004] ? kthread+0xd2/0x100
[ +0.000006] ? __pfx_kthread+0x10/0x10
[ +0.000006] ? ret_from_fork+0x34/0x50
[ +0.000004] ? __pfx_kthread+0x10/0x10
[ +0.000005] ? ret_from_fork_asm+0x1a/0x30
[ +0.000011] </TASK>
(cherry picked from commit 1c86c81a86c60f9b15d3e3f43af0363cf56063e7) |
| NVIDIA Riva contains a vulnerability where a user could cause an improper access control issue. A successful exploit of this vulnerability might lead to escalation of privileges, data tampering, denial of service, or information disclosure. |
| NVIDIA Riva contains a vulnerability where a user could cause an improper access control issue. A successful exploit of this vulnerability might lead to data tampering or denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: don't auto enable misc vector
Currently, there is a time window between misc irq enabled
and service task inited. If an interrupte is reported at
this time, it will cause warning like below:
[ 16.324639] Call trace:
[ 16.324641] __queue_delayed_work+0xb8/0xe0
[ 16.324643] mod_delayed_work_on+0x78/0xd0
[ 16.324655] hclge_errhand_task_schedule+0x58/0x90 [hclge]
[ 16.324662] hclge_misc_irq_handle+0x168/0x240 [hclge]
[ 16.324666] __handle_irq_event_percpu+0x64/0x1e0
[ 16.324667] handle_irq_event+0x80/0x170
[ 16.324670] handle_fasteoi_edge_irq+0x110/0x2bc
[ 16.324671] __handle_domain_irq+0x84/0xfc
[ 16.324673] gic_handle_irq+0x88/0x2c0
[ 16.324674] el1_irq+0xb8/0x140
[ 16.324677] arch_cpu_idle+0x18/0x40
[ 16.324679] default_idle_call+0x5c/0x1bc
[ 16.324682] cpuidle_idle_call+0x18c/0x1c4
[ 16.324684] do_idle+0x174/0x17c
[ 16.324685] cpu_startup_entry+0x30/0x6c
[ 16.324687] secondary_start_kernel+0x1a4/0x280
[ 16.324688] ---[ end trace 6aa0bff672a964aa ]---
So don't auto enable misc vector when request irq.. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix kernel async DIO
Netfslib needs to be able to handle kernel-initiated asynchronous DIO that
is supplied with a bio_vec[] array. Currently, because of the async flag,
this gets passed to netfs_extract_user_iter() which throws a warning and
fails because it only handles IOVEC and UBUF iterators. This can be
triggered through a combination of cifs and a loopback blockdev with
something like:
mount //my/cifs/share /foo
dd if=/dev/zero of=/foo/m0 bs=4K count=1K
losetup --sector-size 4096 --direct-io=on /dev/loop2046 /foo/m0
echo hello >/dev/loop2046
This causes the following to appear in syslog:
WARNING: CPU: 2 PID: 109 at fs/netfs/iterator.c:50 netfs_extract_user_iter+0x170/0x250 [netfs]
and the write to fail.
Fix this by removing the check in netfs_unbuffered_write_iter_locked() that
causes async kernel DIO writes to be handled as userspace writes. Note
that this change relies on the kernel caller maintaining the existence of
the bio_vec array (or kvec[] or folio_queue) until the op is complete. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: memalloc: prefer dma_mapping_error() over explicit address checking
With CONFIG_DMA_API_DEBUG enabled, the following warning is observed:
DMA-API: snd_hda_intel 0000:03:00.1: device driver failed to check map error[device address=0x00000000ffff0000] [size=20480 bytes] [mapped as single]
WARNING: CPU: 28 PID: 2255 at kernel/dma/debug.c:1036 check_unmap+0x1408/0x2430
CPU: 28 UID: 42 PID: 2255 Comm: wireplumber Tainted: G W L 6.12.0-10-133577cad6bf48e5a7848c4338124081393bfe8a+ #759
debug_dma_unmap_page+0xe9/0xf0
snd_dma_wc_free+0x85/0x130 [snd_pcm]
snd_pcm_lib_free_pages+0x1e3/0x440 [snd_pcm]
snd_pcm_common_ioctl+0x1c9a/0x2960 [snd_pcm]
snd_pcm_ioctl+0x6a/0xc0 [snd_pcm]
...
Check for returned DMA addresses using specialized dma_mapping_error()
helper which is generally recommended for this purpose by
Documentation/core-api/dma-api.rst. |
| In Progress Chef Automate, versions earlier than 4.13.295, on Linux x86 platform, an authenticated attacker can gain access to Chef Automate restricted functionality in multiple services via improperly neutralized inputs used in an SQL command. |
| In Progress Chef Automate, versions earlier than 4.13.295, on Linux x86 platform, an authenticated attacker can gain access to Chef Automate restricted functionality in the compliance service via
improperly neutralized inputs used in an SQL command using a well-known token. |