| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check pipe offset before setting vblank
pipe_ctx has a size of MAX_PIPES so checking its index before accessing
the array.
This fixes an OVERRUN issue reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip finding free audio for unknown engine_id
[WHY]
ENGINE_ID_UNKNOWN = -1 and can not be used as an array index. Plus, it
also means it is uninitialized and does not need free audio.
[HOW]
Skip and return NULL.
This fixes 2 OVERRUN issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
tun: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tun_xdp_one() path, which could cause a corrupted skb to be sent
downstack. Even before the skb is transmitted, the
tun_xdp_one-->eth_type_trans() may access the Ethernet header although it
can be less than ETH_HLEN. Once transmitted, this could either cause
out-of-bound access beyond the actual length, or confuse the underlayer
with incorrect or inconsistent header length in the skb metadata.
In the alternative path, tun_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted for
IFF_TAP.
This is to drop any frame shorter than the Ethernet header size just like
how tun_get_user() does.
CVE: CVE-2024-41091 |
| In the Linux kernel, the following vulnerability has been resolved:
tap: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tap_get_user_xdp() path, which could cause a corrupted skb to be
sent downstack. Even before the skb is transmitted, the
tap_get_user_xdp()-->skb_set_network_header() may assume the size is more
than ETH_HLEN. Once transmitted, this could either cause out-of-bound
access beyond the actual length, or confuse the underlayer with incorrect
or inconsistent header length in the skb metadata.
In the alternative path, tap_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted.
This is to drop any frame shorter than the Ethernet header size just like
how tap_get_user() does.
CVE: CVE-2024-41090 |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: toshiba_acpi: Fix array out-of-bounds access
In order to use toshiba_dmi_quirks[] together with the standard DMI
matching functions, it must be terminated by a empty entry.
Since this entry is missing, an array out-of-bounds access occurs
every time the quirk list is processed.
Fix this by adding the terminating empty entry. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate ff offset
This adds sanity checks for ff offset. There is a check
on rt->first_free at first, but walking through by ff
without any check. If the second ff is a large offset.
We may encounter an out-of-bound read. |
| In the Linux kernel, the following vulnerability has been resolved:
net: do not leave a dangling sk pointer, when socket creation fails
It is possible to trigger a use-after-free by:
* attaching an fentry probe to __sock_release() and the probe calling the
bpf_get_socket_cookie() helper
* running traceroute -I 1.1.1.1 on a freshly booted VM
A KASAN enabled kernel will log something like below (decoded and stripped):
==================================================================
BUG: KASAN: slab-use-after-free in __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
Read of size 8 at addr ffff888007110dd8 by task traceroute/299
CPU: 2 PID: 299 Comm: traceroute Tainted: G E 6.10.0-rc2+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117 (discriminator 1))
print_report (mm/kasan/report.c:378 mm/kasan/report.c:488)
? __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
kasan_report (mm/kasan/report.c:603)
? __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
kasan_check_range (mm/kasan/generic.c:183 mm/kasan/generic.c:189)
__sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
bpf_get_socket_ptr_cookie (./arch/x86/include/asm/preempt.h:94 ./include/linux/sock_diag.h:42 net/core/filter.c:5094 net/core/filter.c:5092)
bpf_prog_875642cf11f1d139___sock_release+0x6e/0x8e
bpf_trampoline_6442506592+0x47/0xaf
__sock_release (net/socket.c:652)
__sock_create (net/socket.c:1601)
...
Allocated by task 299 on cpu 2 at 78.328492s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
__kasan_slab_alloc (mm/kasan/common.c:312 mm/kasan/common.c:338)
kmem_cache_alloc_noprof (mm/slub.c:3941 mm/slub.c:4000 mm/slub.c:4007)
sk_prot_alloc (net/core/sock.c:2075)
sk_alloc (net/core/sock.c:2134)
inet_create (net/ipv4/af_inet.c:327 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1572)
__sys_socket (net/socket.c:1660 net/socket.c:1644 net/socket.c:1706)
__x64_sys_socket (net/socket.c:1718)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Freed by task 299 on cpu 2 at 78.328502s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
kasan_save_free_info (mm/kasan/generic.c:582)
poison_slab_object (mm/kasan/common.c:242)
__kasan_slab_free (mm/kasan/common.c:256)
kmem_cache_free (mm/slub.c:4437 mm/slub.c:4511)
__sk_destruct (net/core/sock.c:2117 net/core/sock.c:2208)
inet_create (net/ipv4/af_inet.c:397 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1572)
__sys_socket (net/socket.c:1660 net/socket.c:1644 net/socket.c:1706)
__x64_sys_socket (net/socket.c:1718)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Fix this by clearing the struct socket reference in sk_common_release() to cover
all protocol families create functions, which may already attached the
reference to the sk object with sock_init_data(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't read past the mfuart notifcation
In case the firmware sends a notification that claims it has more data
than it has, we will read past that was allocated for the notification.
Remove the print of the buffer, we won't see it by default. If needed,
we can see the content with tracing.
This was reported by KFENCE. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: check n_ssids before accessing the ssids
In some versions of cfg80211, the ssids poinet might be a valid one even
though n_ssids is 0. Accessing the pointer in this case will cuase an
out-of-bound access. Fix this by checking n_ssids first. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: Fix out-of-bounds read in bond_option_arp_ip_targets_set()
In function bond_option_arp_ip_targets_set(), if newval->string is an
empty string, newval->string+1 will point to the byte after the
string, causing an out-of-bound read.
BUG: KASAN: slab-out-of-bounds in strlen+0x7d/0xa0 lib/string.c:418
Read of size 1 at addr ffff8881119c4781 by task syz-executor665/8107
CPU: 1 PID: 8107 Comm: syz-executor665 Not tainted 6.7.0-rc7 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd9/0x150 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:364 [inline]
print_report+0xc1/0x5e0 mm/kasan/report.c:475
kasan_report+0xbe/0xf0 mm/kasan/report.c:588
strlen+0x7d/0xa0 lib/string.c:418
__fortify_strlen include/linux/fortify-string.h:210 [inline]
in4_pton+0xa3/0x3f0 net/core/utils.c:130
bond_option_arp_ip_targets_set+0xc2/0x910
drivers/net/bonding/bond_options.c:1201
__bond_opt_set+0x2a4/0x1030 drivers/net/bonding/bond_options.c:767
__bond_opt_set_notify+0x48/0x150 drivers/net/bonding/bond_options.c:792
bond_opt_tryset_rtnl+0xda/0x160 drivers/net/bonding/bond_options.c:817
bonding_sysfs_store_option+0xa1/0x120 drivers/net/bonding/bond_sysfs.c:156
dev_attr_store+0x54/0x80 drivers/base/core.c:2366
sysfs_kf_write+0x114/0x170 fs/sysfs/file.c:136
kernfs_fop_write_iter+0x337/0x500 fs/kernfs/file.c:334
call_write_iter include/linux/fs.h:2020 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x96a/0xd80 fs/read_write.c:584
ksys_write+0x122/0x250 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x40/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
---[ end trace ]---
Fix it by adding a check of string length before using it. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq
Undefined behavior is triggered when bnxt_qplib_alloc_init_hwq is called
with hwq_attr->aux_depth != 0 and hwq_attr->aux_stride == 0.
In that case, "roundup_pow_of_two(hwq_attr->aux_stride)" gets called.
roundup_pow_of_two is documented as undefined for 0.
Fix it in the one caller that had this combination.
The undefined behavior was detected by UBSAN:
UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13
shift exponent 64 is too large for 64-bit type 'long unsigned int'
CPU: 24 PID: 1075 Comm: (udev-worker) Not tainted 6.9.0-rc6+ #4
Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.7 10/25/2023
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
ubsan_epilogue+0x5/0x30
__ubsan_handle_shift_out_of_bounds.cold+0x61/0xec
__roundup_pow_of_two+0x25/0x35 [bnxt_re]
bnxt_qplib_alloc_init_hwq+0xa1/0x470 [bnxt_re]
bnxt_qplib_create_qp+0x19e/0x840 [bnxt_re]
bnxt_re_create_qp+0x9b1/0xcd0 [bnxt_re]
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
? __kmalloc+0x1b6/0x4f0
? create_qp.part.0+0x128/0x1c0 [ib_core]
? __pfx_bnxt_re_create_qp+0x10/0x10 [bnxt_re]
create_qp.part.0+0x128/0x1c0 [ib_core]
ib_create_qp_kernel+0x50/0xd0 [ib_core]
create_mad_qp+0x8e/0xe0 [ib_core]
? __pfx_qp_event_handler+0x10/0x10 [ib_core]
ib_mad_init_device+0x2be/0x680 [ib_core]
add_client_context+0x10d/0x1a0 [ib_core]
enable_device_and_get+0xe0/0x1d0 [ib_core]
ib_register_device+0x53c/0x630 [ib_core]
? srso_alias_return_thunk+0x5/0xfbef5
bnxt_re_probe+0xbd8/0xe50 [bnxt_re]
? __pfx_bnxt_re_probe+0x10/0x10 [bnxt_re]
auxiliary_bus_probe+0x49/0x80
? driver_sysfs_add+0x57/0xc0
really_probe+0xde/0x340
? pm_runtime_barrier+0x54/0x90
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x78/0x110
driver_probe_device+0x1f/0xa0
__driver_attach+0xba/0x1c0
bus_for_each_dev+0x8f/0xe0
bus_add_driver+0x146/0x220
driver_register+0x72/0xd0
__auxiliary_driver_register+0x6e/0xd0
? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re]
bnxt_re_mod_init+0x3e/0xff0 [bnxt_re]
? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re]
do_one_initcall+0x5b/0x310
do_init_module+0x90/0x250
init_module_from_file+0x86/0xc0
idempotent_init_module+0x121/0x2b0
__x64_sys_finit_module+0x5e/0xb0
do_syscall_64+0x82/0x160
? srso_alias_return_thunk+0x5/0xfbef5
? syscall_exit_to_user_mode_prepare+0x149/0x170
? srso_alias_return_thunk+0x5/0xfbef5
? syscall_exit_to_user_mode+0x75/0x230
? srso_alias_return_thunk+0x5/0xfbef5
? do_syscall_64+0x8e/0x160
? srso_alias_return_thunk+0x5/0xfbef5
? __count_memcg_events+0x69/0x100
? srso_alias_return_thunk+0x5/0xfbef5
? count_memcg_events.constprop.0+0x1a/0x30
? srso_alias_return_thunk+0x5/0xfbef5
? handle_mm_fault+0x1f0/0x300
? srso_alias_return_thunk+0x5/0xfbef5
? do_user_addr_fault+0x34e/0x640
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f4e5132821d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e3 db 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007ffca9c906a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
RAX: ffffffffffffffda RBX: 0000563ec8a8f130 RCX: 00007f4e5132821d
RDX: 0000000000000000 RSI: 00007f4e518fa07d RDI: 000000000000003b
RBP: 00007ffca9c90760 R08: 00007f4e513f6b20 R09: 00007ffca9c906f0
R10: 0000563ec8a8faa0 R11: 0000000000000246 R12: 00007f4e518fa07d
R13: 0000000000020000 R14: 0000563ec8409e90 R15: 0000563ec8a8fa60
</TASK>
---[ end trace ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip on writeback when it's not applicable
[WHY]
dynamic memory safety error detector (KASAN) catches and generates error
messages "BUG: KASAN: slab-out-of-bounds" as writeback connector does not
support certain features which are not initialized.
[HOW]
Skip them when connector type is DRM_MODE_CONNECTOR_WRITEBACK. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: Fix not validating setsockopt user input
syzbot reported rfcomm_sock_setsockopt_old() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt_old
net/bluetooth/rfcomm/sock.c:632 [inline]
BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt+0x893/0xa70
net/bluetooth/rfcomm/sock.c:673
Read of size 4 at addr ffff8880209a8bc3 by task syz-executor632/5064 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: check A-MSDU format more carefully
If it looks like there's another subframe in the A-MSDU
but the header isn't fully there, we can end up reading
data out of bounds, only to discard later. Make this a
bit more careful and check if the subframe header can
even be present. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-out-of-bounds in smb_strndup_from_utf16()
If ->NameOffset of smb2_create_req is smaller than Buffer offset of
smb2_create_req, slab-out-of-bounds read can happen from smb2_open.
This patch set the minimum value of the name offset to the buffer offset
to validate name length of smb2_create_req(). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix potencial out-of-bounds when buffer offset is invalid
I found potencial out-of-bounds when buffer offset fields of a few requests
is invalid. This patch set the minimum value of buffer offset field to
->Buffer offset to validate buffer length. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 7.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N). |
| A vulnerability in the PDF parsing module of Clam AntiVirus (ClamAV) versions 1.4.0, 1.3.2 and prior versions, all 1.2.x versions, 1.0.6 and prior versions, all 0.105.x versions, all 0.104.x versions, and 0.103.11 and all prior versions could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device.
The vulnerability is due to an out of bounds read. An attacker could exploit this vulnerability by submitting a crafted PDF file to be scanned by ClamAV on an affected device. An exploit could allow the attacker to terminate the scanning process. |
| Incomplete tracking in PostgreSQL of tables with row security allows a reused query to view or change different rows from those intended. CVE-2023-2455 and CVE-2016-2193 fixed most interaction between row security and user ID changes. They missed cases where a subquery, WITH query, security invoker view, or SQL-language function references a table with a row-level security policy. This has the same consequences as the two earlier CVEs. That is to say, it leads to potentially incorrect policies being applied in cases where role-specific policies are used and a given query is planned under one role and then executed under other roles. This scenario can happen under security definer functions or when a common user and query is planned initially and then re-used across multiple SET ROLEs. Applying an incorrect policy may permit a user to complete otherwise-forbidden reads and modifications. This affects only databases that have used CREATE POLICY to define a row security policy. An attacker must tailor an attack to a particular application's pattern of query plan reuse, user ID changes, and role-specific row security policies. Versions before PostgreSQL 17.1, 16.5, 15.9, 14.14, 13.17, and 12.21 are affected. |
| Memory safety bugs present in Firefox 131, Firefox ESR 128.3, and Thunderbird 128.3. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 132, Firefox ESR < 128.4, Thunderbird < 128.4, and Thunderbird < 132. |