| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| This issue was addressed with improved handling of symlinks. This issue is fixed in iOS 18.1 and iPadOS 18.1, iOS 17.7.1 and iPadOS 17.7.1, visionOS 2.1, tvOS 18.1. Restoring a maliciously crafted backup file may lead to modification of protected system files. |
| An information disclosure issue was addressed with improved private data redaction for log entries. This issue is fixed in tvOS 18.1, iOS 18.1 and iPadOS 18.1, iOS 17.7.1 and iPadOS 17.7.1, macOS Ventura 13.7.1, macOS Sonoma 14.7.1, watchOS 11.1, visionOS 2.1. An app may be able to leak sensitive kernel state. |
| This issue was addressed with improved validation of symlinks. This issue is fixed in macOS Sequoia 15.1. An app may be able to access user-sensitive data. |
| This issue was addressed with improved validation of symlinks. This issue is fixed in macOS Sequoia 15, macOS Sonoma 14.7.1. An app may be able to access sensitive user data. |
| A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 Domain Controller R9.2 (All versions), Omnivise T3000 Product Data Management (PDM) R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions), Omnivise T3000 Terminal Server R9.2 (All versions), Omnivise T3000 Thin Client R9.2 (All versions), Omnivise T3000 Whitelisting Server R9.2 (All versions). The affected application regularly executes user modifiable code as a privileged user. This could allow a local authenticated attacker to execute arbitrary code with elevated privileges. |
| The front-end audit log allows viewing of unprotected plaintext passwords, where the passwords are displayed in plain text. |
| IBM Security Access Manager Docker 10.0.0.0 through 10.0.7.1 could allow a local user to possibly elevate their privileges due to sensitive configuration information being exposed. IBM X-Force ID: 292413. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Serialization). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4, 23; Oracle GraalVM for JDK: 17.0.12, 21.0.4, 23; Oracle GraalVM Enterprise Edition: 20.3.15 and 21.3.11. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Scripting). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21; Oracle GraalVM for JDK: 17.0.9; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N). |
| All versions of Apache Santuario - XML Security for Java prior to 2.2.6, 2.3.4, and 3.0.3, when using the JSR 105 API, are vulnerable to an issue where a private key may be disclosed in log files when generating an XML Signature and logging with debug level is enabled. Users are recommended to upgrade to version 2.2.6, 2.3.4, or 3.0.3, which fixes this issue. |
| IBM Security Access Manager Container (IBM Security Verify Access Appliance 10.0.0.0 through 10.0.6.1 and IBM Security Verify Access Docker 10.0.0.0 through 10.0.6.1) could allow a remote user to log into the server due to a user account with an empty password. IBM X-Force ID: 266154. |
| IBM Security Access Manager Container 10.0.0.0 through 10.0.6.1 does not require that docker images should have strong passwords by default, which makes it easier for attackers to compromise user accounts. IBM X-Force ID: 261196. |
| RenderDoc before 1.27 allows local privilege escalation via a symlink attack. It relies on the /tmp/RenderDoc directory regardless of ownership. |
| IBM Security Access Manager Container (IBM Security Verify Access Appliance 10.0.0.0 through 10.0.6.1 and IBM Security Verify Access Docker 10.0.6.1) could allow a local user to obtain root access due to improper access controls. IBM X-Force ID: 254658. |
| Use of Java's default temporary directory for file creation in `FileBackedOutputStream` in Google Guava versions 1.0 to 31.1 on Unix systems and Android Ice Cream Sandwich allows other users and apps on the machine with access to the default Java temporary directory to be able to access the files created by the class.
Even though the security vulnerability is fixed in version 32.0.0, we recommend using version 32.0.1 as version 32.0.0 breaks some functionality under Windows. |
| JavaScript pre-processing can be used by the attacker to gain access to the file system (read-only access on behalf of user "zabbix") on the Zabbix Server or Zabbix Proxy, potentially leading to unauthorized access to sensitive data. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: CORBA). Supported versions that are affected are Oracle Java SE: 8u381, 8u381-perf; Oracle GraalVM Enterprise Edition: 20.3.11 and 21.3.7. Easily exploitable vulnerability allows unauthenticated attacker with network access via CORBA to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.1 Base Score 5.3 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N). |
| Python 3.9.x before 3.9.16 and 3.10.x before 3.10.9 on Linux allows local privilege escalation in a non-default configuration. The Python multiprocessing library, when used with the forkserver start method on Linux, allows pickles to be deserialized from any user in the same machine local network namespace, which in many system configurations means any user on the same machine. Pickles can execute arbitrary code. Thus, this allows for local user privilege escalation to the user that any forkserver process is running as. Setting multiprocessing.util.abstract_sockets_supported to False is a workaround. The forkserver start method for multiprocessing is not the default start method. This issue is Linux specific because only Linux supports abstract namespace sockets. CPython before 3.9 does not make use of Linux abstract namespace sockets by default. Support for users manually specifying an abstract namespace socket was added as a bugfix in 3.7.8 and 3.8.3, but users would need to make specific uncommon API calls in order to do that in CPython before 3.9. |
| Once an user is authenticated on Jolokia, he can potentially trigger arbitrary code execution.
In details, in ActiveMQ configurations, jetty allows
org.jolokia.http.AgentServlet to handler request to /api/jolokia
org.jolokia.http.HttpRequestHandler#handlePostRequest is able to
create JmxRequest through JSONObject. And calls to
org.jolokia.http.HttpRequestHandler#executeRequest.
Into deeper calling stacks,
org.jolokia.handler.ExecHandler#doHandleRequest can be invoked
through refection. This could lead to RCE through via
various mbeans. One example is unrestricted deserialization in jdk.management.jfr.FlightRecorderMXBeanImpl which exists on Java version above 11.
1 Call newRecording.
2 Call setConfiguration. And a webshell data hides in it.
3 Call startRecording.
4 Call copyTo method. The webshell will be written to a .jsp file.
The mitigation is to restrict (by default) the actions authorized on Jolokia, or disable Jolokia.
A more restrictive Jolokia configuration has been defined in default ActiveMQ distribution. We encourage users to upgrade to ActiveMQ distributions version including updated Jolokia configuration: 5.16.6, 5.17.4, 5.18.0, 6.0.0.
|
| The combination of primitives offered by SMB and AFP in their default configuration allows the arbitrary writing of files. By exploiting these combination of primitives, an attacker can execute arbitrary code. |