| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vhost: Take a reference on the task in struct vhost_task.
vhost_task_create() creates a task and keeps a reference to its
task_struct. That task may exit early via a signal and its task_struct
will be released.
A pending vhost_task_wake() will then attempt to wake the task and
access a task_struct which is no longer there.
Acquire a reference on the task_struct while creating the thread and
release the reference while the struct vhost_task itself is removed.
If the task exits early due to a signal, then the vhost_task_wake() will
still access a valid task_struct. The wake is safe and will be skipped
in this case. |
| A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
The nft_verdict_init() function allows positive values as drop error within the hook verdict, and hence the nf_hook_slow() function can cause a double free vulnerability when NF_DROP is issued with a drop error which resembles NF_ACCEPT.
We recommend upgrading past commit f342de4e2f33e0e39165d8639387aa6c19dff660. |
| IBM Aspera Faspex 4.4.2 Patch Level 1 and earlier could allow a remote attacker to execute arbitrary code on the system, caused by a YAML deserialization flaw. By sending a specially crafted obsolete API call, an attacker could exploit this vulnerability to execute arbitrary code on the system. The obsolete API call was removed in Faspex 4.4.2 PL2. IBM X-Force ID: 243512. |
| NVIDIA Display Driver for Linux contains a vulnerability in a kernel module, where an attacker might be able to trigger a null pointer deference. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA Display Driver for Windows and Linux contains a vulnerability in a video decoder, where an attacker might cause an out-of-bounds read. A successful exploit of this vulnerability might lead to information disclosure or denial of service. |
| IBM Sterling B2B Integrator 6.2.0.0 through 6.2.0.5, and 6.2.1.0 and IBM Sterling File Gateway 6.2.0.0 through 6.2.0.5, and 6.2.1.0 stores user credentials in configuration files which can be read by a local user. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: use get_random_u32 instead of prandom
bh might occur while updating per-cpu rnd_state from user context,
ie. local_out path.
BUG: using smp_processor_id() in preemptible [00000000] code: nginx/2725
caller is nft_ng_random_eval+0x24/0x54 [nft_numgen]
Call Trace:
check_preemption_disabled+0xde/0xe0
nft_ng_random_eval+0x24/0x54 [nft_numgen]
Use the random driver instead, this also avoids need for local prandom
state. Moreover, prandom now uses the random driver since d4150779e60f
("random32: use real rng for non-deterministic randomness").
Based on earlier patch from Pablo Neira. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/reset: Fix error_state_read ptr + offset use
Fix our pointer offset usage in error_state_read
when there is no i915_gpu_coredump but buf offset
is non-zero.
This fixes a kernel page fault can happen when
multiple tests are running concurrently in a loop
and one is producing engine resets and consuming
the i915 error_state dump while the other is
forcing full GT resets. (takes a while to trigger).
The dmesg call trace:
[ 5590.803000] BUG: unable to handle page fault for address:
ffffffffa0b0e000
[ 5590.803009] #PF: supervisor read access in kernel mode
[ 5590.803013] #PF: error_code(0x0000) - not-present page
[ 5590.803016] PGD 5814067 P4D 5814067 PUD 5815063 PMD 109de4067
PTE 0
[ 5590.803022] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 5590.803026] CPU: 5 PID: 13656 Comm: i915_hangman Tainted: G U
5.17.0-rc5-ups69-guc-err-capt-rev6+ #136
[ 5590.803033] Hardware name: Intel Corporation Alder Lake Client
Platform/AlderLake-M LP4x RVP, BIOS ADLPFWI1.R00.
3031.A02.2201171222 01/17/2022
[ 5590.803039] RIP: 0010:memcpy_erms+0x6/0x10
[ 5590.803045] Code: fe ff ff cc eb 1e 0f 1f 00 48 89 f8 48 89 d1
48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3
66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4
c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20
72 7e 40 38 fe
[ 5590.803054] RSP: 0018:ffffc90003a8fdf0 EFLAGS: 00010282
[ 5590.803057] RAX: ffff888107ee9000 RBX: ffff888108cb1a00
RCX: 0000000000000f8f
[ 5590.803061] RDX: 0000000000001000 RSI: ffffffffa0b0e000
RDI: ffff888107ee9071
[ 5590.803065] RBP: 0000000000000000 R08: 0000000000000001
R09: 0000000000000001
[ 5590.803069] R10: 0000000000000001 R11: 0000000000000002
R12: 0000000000000019
[ 5590.803073] R13: 0000000000174fff R14: 0000000000001000
R15: ffff888107ee9000
[ 5590.803077] FS: 00007f62a99bee80(0000) GS:ffff88849f880000(0000)
knlGS:0000000000000000
[ 5590.803082] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 5590.803085] CR2: ffffffffa0b0e000 CR3: 000000010a1a8004
CR4: 0000000000770ee0
[ 5590.803089] PKRU: 55555554
[ 5590.803091] Call Trace:
[ 5590.803093] <TASK>
[ 5590.803096] error_state_read+0xa1/0xd0 [i915]
[ 5590.803175] kernfs_fop_read_iter+0xb2/0x1b0
[ 5590.803180] new_sync_read+0x116/0x1a0
[ 5590.803185] vfs_read+0x114/0x1b0
[ 5590.803189] ksys_read+0x63/0xe0
[ 5590.803193] do_syscall_64+0x38/0xc0
[ 5590.803197] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 5590.803201] RIP: 0033:0x7f62aaea5912
[ 5590.803204] Code: c0 e9 b2 fe ff ff 50 48 8d 3d 5a b9 0c 00 e8 05
19 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25
18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff
ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24
[ 5590.803213] RSP: 002b:00007fff5b659ae8 EFLAGS: 00000246
ORIG_RAX: 0000000000000000
[ 5590.803218] RAX: ffffffffffffffda RBX: 0000000000100000
RCX: 00007f62aaea5912
[ 5590.803221] RDX: 000000000008b000 RSI: 00007f62a8c4000f
RDI: 0000000000000006
[ 5590.803225] RBP: 00007f62a8bcb00f R08: 0000000000200010
R09: 0000000000101000
[ 5590.803229] R10: 0000000000000001 R11: 0000000000000246
R12: 0000000000000006
[ 5590.803233] R13: 0000000000075000 R14: 00007f62a8acb010
R15: 0000000000200000
[ 5590.803238] </TASK>
[ 5590.803240] Modules linked in: i915 ttm drm_buddy drm_dp_helper
drm_kms_helper syscopyarea sysfillrect sysimgblt
fb_sys_fops prime_numbers nfnetlink br_netfilter
overlay mei_pxp mei_hdcp x86_pkg_temp_thermal
coretemp kvm_intel snd_hda_codec_hdmi snd_hda_intel
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tty: goldfish: Fix free_irq() on remove
Pass the correct dev_id to free_irq() to fix this splat when the driver
is unbound:
WARNING: CPU: 0 PID: 30 at kernel/irq/manage.c:1895 free_irq
Trying to free already-free IRQ 65
Call Trace:
warn_slowpath_fmt
free_irq
goldfish_tty_remove
platform_remove
device_remove
device_release_driver_internal
device_driver_detach
unbind_store
drv_attr_store
... |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix call trace in setup_tx_descriptors
After PF reset and ethtool -t there was call trace in dmesg
sometimes leading to panic. When there was some time, around 5
seconds, between reset and test there were no errors.
Problem was that pf reset calls i40e_vsi_close in prep_for_reset
and ethtool -t calls i40e_vsi_close in diag_test. If there was not
enough time between those commands the second i40e_vsi_close starts
before previous i40e_vsi_close was done which leads to crash.
Add check to diag_test if pf is in reset and don't start offline
tests if it is true.
Add netif_info("testing failed") into unhappy path of i40e_diag_test() |
| In the Linux kernel, the following vulnerability has been resolved:
clocksource: hyper-v: unexport __init-annotated hv_init_clocksource()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
arch/x86/kernel/cpu/mshyperv.c is never compiled as modular.
(CONFIG_HYPERVISOR_GUEST is boolean) |
| In the Linux kernel, the following vulnerability has been resolved:
sock: redo the psock vs ULP protection check
Commit 8a59f9d1e3d4 ("sock: Introduce sk->sk_prot->psock_update_sk_prot()")
has moved the inet_csk_has_ulp(sk) check from sk_psock_init() to
the new tcp_bpf_update_proto() function. I'm guessing that this
was done to allow creating psocks for non-inet sockets.
Unfortunately the destruction path for psock includes the ULP
unwind, so we need to fail the sk_psock_init() itself.
Otherwise if ULP is already present we'll notice that later,
and call tcp_update_ulp() with the sk_proto of the ULP
itself, which will most likely result in the ULP looping
its callbacks. |
| In the Linux kernel, the following vulnerability has been resolved:
filemap: Handle sibling entries in filemap_get_read_batch()
If a read races with an invalidation followed by another read, it is
possible for a folio to be replaced with a higher-order folio. If that
happens, we'll see a sibling entry for the new folio in the next iteration
of the loop. This manifests as a NULL pointer dereference while holding
the RCU read lock.
Handle this by simply returning. The next call will find the new folio
and handle it correctly. The other ways of handling this rare race are
more complex and it's just not worth it. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Allocate/free queue resource only during probe/remove
Currently, the sub-queues and event pool resources are allocated/freed for
every CRQ connection event such as reset and LPM. This exposes the driver
to a couple issues. First the inefficiency of freeing and reallocating
memory that can simply be resued after being sanitized. Further, a system
under memory pressue runs the risk of allocation failures that could result
in a crippled driver. Finally, there is a race window where command
submission/compeletion can try to pull/return elements from/to an event
pool that is being deleted or already has been deleted due to the lack of
host state around freeing/allocating resources. The following is an example
of list corruption following a live partition migration (LPM):
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: vfat fat isofs cdrom ext4 mbcache jbd2 nft_counter nft_compat nf_tables nfnetlink rpadlpar_io rpaphp xsk_diag nfsv3 nfs_acl nfs lockd grace fscache netfs rfkill bonding tls sunrpc pseries_rng drm drm_panel_orientation_quirks xfs libcrc32c dm_service_time sd_mod t10_pi sg ibmvfc scsi_transport_fc ibmveth vmx_crypto dm_multipath dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse
CPU: 0 PID: 2108 Comm: ibmvfc_0 Kdump: loaded Not tainted 5.14.0-70.9.1.el9_0.ppc64le #1
NIP: c0000000007c4bb0 LR: c0000000007c4bac CTR: 00000000005b9a10
REGS: c00000025c10b760 TRAP: 0700 Not tainted (5.14.0-70.9.1.el9_0.ppc64le)
MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 2800028f XER: 0000000f
CFAR: c0000000001f55bc IRQMASK: 0
GPR00: c0000000007c4bac c00000025c10ba00 c000000002a47c00 000000000000004e
GPR04: c0000031e3006f88 c0000031e308bd00 c00000025c10b768 0000000000000027
GPR08: 0000000000000000 c0000031e3009dc0 00000031e0eb0000 0000000000000000
GPR12: c0000031e2ffffa8 c000000002dd0000 c000000000187108 c00000020fcee2c0
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 0000000000000000 0000000000000000 c008000002f81300
GPR24: 5deadbeef0000100 5deadbeef0000122 c000000263ba6910 c00000024cc88000
GPR28: 000000000000003c c0000002430a0000 c0000002430ac300 000000000000c300
NIP [c0000000007c4bb0] __list_del_entry_valid+0x90/0x100
LR [c0000000007c4bac] __list_del_entry_valid+0x8c/0x100
Call Trace:
[c00000025c10ba00] [c0000000007c4bac] __list_del_entry_valid+0x8c/0x100 (unreliable)
[c00000025c10ba60] [c008000002f42284] ibmvfc_free_queue+0xec/0x210 [ibmvfc]
[c00000025c10bb10] [c008000002f4246c] ibmvfc_deregister_scsi_channel+0xc4/0x160 [ibmvfc]
[c00000025c10bba0] [c008000002f42580] ibmvfc_release_sub_crqs+0x78/0x130 [ibmvfc]
[c00000025c10bc20] [c008000002f4f6cc] ibmvfc_do_work+0x5c4/0xc70 [ibmvfc]
[c00000025c10bce0] [c008000002f4fdec] ibmvfc_work+0x74/0x1e8 [ibmvfc]
[c00000025c10bda0] [c0000000001872b8] kthread+0x1b8/0x1c0
[c00000025c10be10] [c00000000000cd64] ret_from_kernel_thread+0x5c/0x64
Instruction dump:
40820034 38600001 38210060 4e800020 7c0802a6 7c641b78 3c62fe7a 7d254b78
3863b590 f8010070 4ba309cd 60000000 <0fe00000> 7c0802a6 3c62fe7a 3863b640
---[ end trace 11a2b65a92f8b66c ]---
ibmvfc 30000003: Send warning. Receive queue closed, will retry.
Add registration/deregistration helpers that are called instead during
connection resets to sanitize and reconfigure the queues. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix hang during unmount when block group reclaim task is running
When we start an unmount, at close_ctree(), if we have the reclaim task
running and in the middle of a data block group relocation, we can trigger
a deadlock when stopping an async reclaim task, producing a trace like the
following:
[629724.498185] task:kworker/u16:7 state:D stack: 0 pid:681170 ppid: 2 flags:0x00004000
[629724.499760] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[629724.501267] Call Trace:
[629724.501759] <TASK>
[629724.502174] __schedule+0x3cb/0xed0
[629724.502842] schedule+0x4e/0xb0
[629724.503447] btrfs_wait_on_delayed_iputs+0x7c/0xc0 [btrfs]
[629724.504534] ? prepare_to_wait_exclusive+0xc0/0xc0
[629724.505442] flush_space+0x423/0x630 [btrfs]
[629724.506296] ? rcu_read_unlock_trace_special+0x20/0x50
[629724.507259] ? lock_release+0x220/0x4a0
[629724.507932] ? btrfs_get_alloc_profile+0xb3/0x290 [btrfs]
[629724.508940] ? do_raw_spin_unlock+0x4b/0xa0
[629724.509688] btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs]
[629724.510922] process_one_work+0x252/0x5a0
[629724.511694] ? process_one_work+0x5a0/0x5a0
[629724.512508] worker_thread+0x52/0x3b0
[629724.513220] ? process_one_work+0x5a0/0x5a0
[629724.514021] kthread+0xf2/0x120
[629724.514627] ? kthread_complete_and_exit+0x20/0x20
[629724.515526] ret_from_fork+0x22/0x30
[629724.516236] </TASK>
[629724.516694] task:umount state:D stack: 0 pid:719055 ppid:695412 flags:0x00004000
[629724.518269] Call Trace:
[629724.518746] <TASK>
[629724.519160] __schedule+0x3cb/0xed0
[629724.519835] schedule+0x4e/0xb0
[629724.520467] schedule_timeout+0xed/0x130
[629724.521221] ? lock_release+0x220/0x4a0
[629724.521946] ? lock_acquired+0x19c/0x420
[629724.522662] ? trace_hardirqs_on+0x1b/0xe0
[629724.523411] __wait_for_common+0xaf/0x1f0
[629724.524189] ? usleep_range_state+0xb0/0xb0
[629724.524997] __flush_work+0x26d/0x530
[629724.525698] ? flush_workqueue_prep_pwqs+0x140/0x140
[629724.526580] ? lock_acquire+0x1a0/0x310
[629724.527324] __cancel_work_timer+0x137/0x1c0
[629724.528190] close_ctree+0xfd/0x531 [btrfs]
[629724.529000] ? evict_inodes+0x166/0x1c0
[629724.529510] generic_shutdown_super+0x74/0x120
[629724.530103] kill_anon_super+0x14/0x30
[629724.530611] btrfs_kill_super+0x12/0x20 [btrfs]
[629724.531246] deactivate_locked_super+0x31/0xa0
[629724.531817] cleanup_mnt+0x147/0x1c0
[629724.532319] task_work_run+0x5c/0xa0
[629724.532984] exit_to_user_mode_prepare+0x1a6/0x1b0
[629724.533598] syscall_exit_to_user_mode+0x16/0x40
[629724.534200] do_syscall_64+0x48/0x90
[629724.534667] entry_SYSCALL_64_after_hwframe+0x44/0xae
[629724.535318] RIP: 0033:0x7fa2b90437a7
[629724.535804] RSP: 002b:00007ffe0b7e4458 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[629724.536912] RAX: 0000000000000000 RBX: 00007fa2b9182264 RCX: 00007fa2b90437a7
[629724.538156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000555d6cf20dd0
[629724.539053] RBP: 0000555d6cf20ba0 R08: 0000000000000000 R09: 00007ffe0b7e3200
[629724.539956] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[629724.540883] R13: 0000555d6cf20dd0 R14: 0000555d6cf20cb0 R15: 0000000000000000
[629724.541796] </TASK>
This happens because:
1) Before entering close_ctree() we have the async block group reclaim
task running and relocating a data block group;
2) There's an async metadata (or data) space reclaim task running;
3) We enter close_ctree() and park the cleaner kthread;
4) The async space reclaim task is at flush_space() and runs all the
existing delayed iputs;
5) Before the async space reclaim task calls
btrfs_wait_on_delayed_iputs(), the block group reclaim task which is
doing the data block group relocation, creates a delayed iput at
replace_file_extents() (called when COWing leaves that have file extent
items pointing to relocated data exten
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
zonefs: fix zonefs_iomap_begin() for reads
If a readahead is issued to a sequential zone file with an offset
exactly equal to the current file size, the iomap type is set to
IOMAP_UNWRITTEN, which will prevent an IO, but the iomap length is
calculated as 0. This causes a WARN_ON() in iomap_iter():
[17309.548939] WARNING: CPU: 3 PID: 2137 at fs/iomap/iter.c:34 iomap_iter+0x9cf/0xe80
[...]
[17309.650907] RIP: 0010:iomap_iter+0x9cf/0xe80
[...]
[17309.754560] Call Trace:
[17309.757078] <TASK>
[17309.759240] ? lock_is_held_type+0xd8/0x130
[17309.763531] iomap_readahead+0x1a8/0x870
[17309.767550] ? iomap_read_folio+0x4c0/0x4c0
[17309.771817] ? lockdep_hardirqs_on_prepare+0x400/0x400
[17309.778848] ? lock_release+0x370/0x750
[17309.784462] ? folio_add_lru+0x217/0x3f0
[17309.790220] ? reacquire_held_locks+0x4e0/0x4e0
[17309.796543] read_pages+0x17d/0xb60
[17309.801854] ? folio_add_lru+0x238/0x3f0
[17309.807573] ? readahead_expand+0x5f0/0x5f0
[17309.813554] ? policy_node+0xb5/0x140
[17309.819018] page_cache_ra_unbounded+0x27d/0x450
[17309.825439] filemap_get_pages+0x500/0x1450
[17309.831444] ? filemap_add_folio+0x140/0x140
[17309.837519] ? lock_is_held_type+0xd8/0x130
[17309.843509] filemap_read+0x28c/0x9f0
[17309.848953] ? zonefs_file_read_iter+0x1ea/0x4d0 [zonefs]
[17309.856162] ? trace_contention_end+0xd6/0x130
[17309.862416] ? __mutex_lock+0x221/0x1480
[17309.868151] ? zonefs_file_read_iter+0x166/0x4d0 [zonefs]
[17309.875364] ? filemap_get_pages+0x1450/0x1450
[17309.881647] ? __mutex_unlock_slowpath+0x15e/0x620
[17309.888248] ? wait_for_completion_io_timeout+0x20/0x20
[17309.895231] ? lock_is_held_type+0xd8/0x130
[17309.901115] ? lock_is_held_type+0xd8/0x130
[17309.906934] zonefs_file_read_iter+0x356/0x4d0 [zonefs]
[17309.913750] new_sync_read+0x2d8/0x520
[17309.919035] ? __x64_sys_lseek+0x1d0/0x1d0
Furthermore, this causes iomap_readahead() to loop forever as
iomap_readahead_iter() always returns 0, making no progress.
Fix this by treating reads after the file size as access to holes,
setting the iomap type to IOMAP_HOLE, the iomap addr to IOMAP_NULL_ADDR
and using the length argument as is for the iomap length. To simplify
the code with this change, zonefs_iomap_begin() is split into the read
variant, zonefs_read_iomap_begin() and zonefs_read_iomap_ops, and the
write variant, zonefs_write_iomap_begin() and zonefs_write_iomap_ops. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on ext4_mb_use_inode_pa
Hulk Robot reported a BUG_ON:
==================================================================
kernel BUG at fs/ext4/mballoc.c:3211!
[...]
RIP: 0010:ext4_mb_mark_diskspace_used.cold+0x85/0x136f
[...]
Call Trace:
ext4_mb_new_blocks+0x9df/0x5d30
ext4_ext_map_blocks+0x1803/0x4d80
ext4_map_blocks+0x3a4/0x1a10
ext4_writepages+0x126d/0x2c30
do_writepages+0x7f/0x1b0
__filemap_fdatawrite_range+0x285/0x3b0
file_write_and_wait_range+0xb1/0x140
ext4_sync_file+0x1aa/0xca0
vfs_fsync_range+0xfb/0x260
do_fsync+0x48/0xa0
[...]
==================================================================
Above issue may happen as follows:
-------------------------------------
do_fsync
vfs_fsync_range
ext4_sync_file
file_write_and_wait_range
__filemap_fdatawrite_range
do_writepages
ext4_writepages
mpage_map_and_submit_extent
mpage_map_one_extent
ext4_map_blocks
ext4_mb_new_blocks
ext4_mb_normalize_request
>>> start + size <= ac->ac_o_ex.fe_logical
ext4_mb_regular_allocator
ext4_mb_simple_scan_group
ext4_mb_use_best_found
ext4_mb_new_preallocation
ext4_mb_new_inode_pa
ext4_mb_use_inode_pa
>>> set ac->ac_b_ex.fe_len <= 0
ext4_mb_mark_diskspace_used
>>> BUG_ON(ac->ac_b_ex.fe_len <= 0);
we can easily reproduce this problem with the following commands:
`fallocate -l100M disk`
`mkfs.ext4 -b 1024 -g 256 disk`
`mount disk /mnt`
`fsstress -d /mnt -l 0 -n 1000 -p 1`
The size must be smaller than or equal to EXT4_BLOCKS_PER_GROUP.
Therefore, "start + size <= ac->ac_o_ex.fe_logical" may occur
when the size is truncated. So start should be the start position of
the group where ac_o_ex.fe_logical is located after alignment.
In addition, when the value of fe_logical or EXT4_BLOCKS_PER_GROUP
is very large, the value calculated by start_off is more accurate. |
| In the Linux kernel, the following vulnerability has been resolved:
cfi: Fix __cfi_slowpath_diag RCU usage with cpuidle
RCU_NONIDLE usage during __cfi_slowpath_diag can result in an invalid
RCU state in the cpuidle code path:
WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:613 rcu_eqs_enter+0xe4/0x138
...
Call trace:
rcu_eqs_enter+0xe4/0x138
rcu_idle_enter+0xa8/0x100
cpuidle_enter_state+0x154/0x3a8
cpuidle_enter+0x3c/0x58
do_idle.llvm.6590768638138871020+0x1f4/0x2ec
cpu_startup_entry+0x28/0x2c
secondary_start_kernel+0x1b8/0x220
__secondary_switched+0x94/0x98
Instead, call rcu_irq_enter/exit to wake up RCU only when needed and
disable interrupts for the entire CFI shadow/module check when we do. |
| In the Linux kernel, the following vulnerability has been resolved:
dm mirror log: round up region bitmap size to BITS_PER_LONG
The code in dm-log rounds up bitset_size to 32 bits. It then uses
find_next_zero_bit_le on the allocated region. find_next_zero_bit_le
accesses the bitmap using unsigned long pointers. So, on 64-bit
architectures, it may access 4 bytes beyond the allocated size.
Fix this bug by rounding up bitset_size to BITS_PER_LONG.
This bug was found by running the lvm2 testsuite with kasan. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: ftrace: consistently handle PLTs.
Sometimes it is necessary to use a PLT entry to call an ftrace
trampoline. This is handled by ftrace_make_call() and ftrace_make_nop(),
with each having *almost* identical logic, but this is not handled by
ftrace_modify_call() since its introduction in commit:
3b23e4991fb66f6d ("arm64: implement ftrace with regs")
Due to this, if we ever were to call ftrace_modify_call() for a callsite
which requires a PLT entry for a trampoline, then either:
a) If the old addr requires a trampoline, ftrace_modify_call() will use
an out-of-range address to generate the 'old' branch instruction.
This will result in warnings from aarch64_insn_gen_branch_imm() and
ftrace_modify_code(), and no instructions will be modified. As
ftrace_modify_call() will return an error, this will result in
subsequent internal ftrace errors.
b) If the old addr does not require a trampoline, but the new addr does,
ftrace_modify_call() will use an out-of-range address to generate the
'new' branch instruction. This will result in warnings from
aarch64_insn_gen_branch_imm(), and ftrace_modify_code() will replace
the 'old' branch with a BRK. This will result in a kernel panic when
this BRK is later executed.
Practically speaking, case (a) is vastly more likely than case (b), and
typically this will result in internal ftrace errors that don't
necessarily affect the rest of the system. This can be demonstrated with
an out-of-tree test module which triggers ftrace_modify_call(), e.g.
| # insmod test_ftrace.ko
| test_ftrace: Function test_function raw=0xffffb3749399201c, callsite=0xffffb37493992024
| branch_imm_common: offset out of range
| branch_imm_common: offset out of range
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffffb37493992024>] test_function+0x8/0x38 [test_ftrace]
| actual: 1d:00:00:94
| Updating ftrace call site to call a different ftrace function
| ftrace record flags: e0000002
| (2) R
| expected tramp: ffffb374ae42ed54
| ------------[ cut here ]------------
| WARNING: CPU: 0 PID: 165 at kernel/trace/ftrace.c:2085 ftrace_bug+0x280/0x2b0
| Modules linked in: test_ftrace(+)
| CPU: 0 PID: 165 Comm: insmod Not tainted 5.19.0-rc2-00002-g4d9ead8b45ce #13
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x280/0x2b0
| lr : ftrace_bug+0x280/0x2b0
| sp : ffff80000839ba00
| x29: ffff80000839ba00 x28: 0000000000000000 x27: ffff80000839bcf0
| x26: ffffb37493994180 x25: ffffb374b0991c28 x24: ffffb374b0d70000
| x23: 00000000ffffffea x22: ffffb374afcc33b0 x21: ffffb374b08f9cc8
| x20: ffff572b8462c000 x19: ffffb374b08f9000 x18: ffffffffffffffff
| x17: 6c6c6163202c6331 x16: ffffb374ae5ad110 x15: ffffb374b0d51ee4
| x14: 0000000000000000 x13: 3435646532346561 x12: 3437336266666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : ffffb374ae5149e8
| x8 : 336266666666203a x7 : 706d617274206465 x6 : 00000000fffff167
| x5 : ffff572bffbc4a08 x4 : 00000000fffff167 x3 : 0000000000000000
| x2 : 0000000000000000 x1 : ffff572b84461e00 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x280/0x2b0
| ftrace_replace_code+0x98/0xa0
| ftrace_modify_all_code+0xe0/0x144
| arch_ftrace_update_code+0x14/0x20
| ftrace_startup+0xf8/0x1b0
| register_ftrace_function+0x38/0x90
| test_ftrace_init+0xd0/0x1000 [test_ftrace]
| do_one_initcall+0x50/0x2b0
| do_init_module+0x50/0x1f0
| load_module+0x17c8/0x1d64
| __do_sys_finit_module+0xa8/0x100
| __arm64_sys_finit_module+0x2c/0x3c
| invoke_syscall+0x50/0x120
| el0_svc_common.constprop.0+0xdc/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x34/0xb0
| el0t_64_sync_handler+0xbc/0x140
| el0t_64_sync+0x18c/0x190
| ---[ end trace 0000000000000000 ]---
We can solve this by consistently determining whether to use a PLT entry
for an address.
Note that since (the earlier) commit:
f1a54ae9
---truncated--- |