| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Disable preemption when probing user return MSRs
Disable preemption when probing a user return MSR via RDSMR/WRMSR. If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.
Opportunistically land the helper in common x86, SVM will use the helper
in a future commit. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix crash in auto_retire
The retire logic uses the 2 lower bits of the pointer to the retire
function to store flags. However, the auto_retire function is not
guaranteed to be aligned to a multiple of 4, which causes crashes as
we jump to the wrong address, for example like this:
2021-04-24T18:03:53.804300Z WARNING kernel: [ 516.876901] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
2021-04-24T18:03:53.804310Z WARNING kernel: [ 516.876906] CPU: 7 PID: 146 Comm: kworker/u16:6 Tainted: G U 5.4.105-13595-g3cd84167b2df #1
2021-04-24T18:03:53.804311Z WARNING kernel: [ 516.876907] Hardware name: Google Volteer2/Volteer2, BIOS Google_Volteer2.13672.76.0 02/22/2021
2021-04-24T18:03:53.804312Z WARNING kernel: [ 516.876911] Workqueue: events_unbound active_work
2021-04-24T18:03:53.804313Z WARNING kernel: [ 516.876914] RIP: 0010:auto_retire+0x1/0x20
2021-04-24T18:03:53.804314Z WARNING kernel: [ 516.876916] Code: e8 01 f2 ff ff eb 02 31 db 48 89 d8 5b 5d c3 0f 1f 44 00 00 55 48 89 e5 f0 ff 87 c8 00 00 00 0f 88 ab 47 4a 00 31 c0 5d c3 0f <1f> 44 00 00 55 48 89 e5 f0 ff 8f c8 00 00 00 0f 88 9a 47 4a 00 74
2021-04-24T18:03:53.804319Z WARNING kernel: [ 516.876918] RSP: 0018:ffff9b4d809fbe38 EFLAGS: 00010286
2021-04-24T18:03:53.804320Z WARNING kernel: [ 516.876919] RAX: 0000000000000007 RBX: ffff927915079600 RCX: 0000000000000007
2021-04-24T18:03:53.804320Z WARNING kernel: [ 516.876921] RDX: ffff9b4d809fbe40 RSI: 0000000000000286 RDI: ffff927915079600
2021-04-24T18:03:53.804321Z WARNING kernel: [ 516.876922] RBP: ffff9b4d809fbe68 R08: 8080808080808080 R09: fefefefefefefeff
2021-04-24T18:03:53.804321Z WARNING kernel: [ 516.876924] R10: 0000000000000010 R11: ffffffff92e44bd8 R12: ffff9279150796a0
2021-04-24T18:03:53.804322Z WARNING kernel: [ 516.876925] R13: ffff92791c368180 R14: ffff927915079640 R15: 000000001c867605
2021-04-24T18:03:53.804323Z WARNING kernel: [ 516.876926] FS: 0000000000000000(0000) GS:ffff92791ffc0000(0000) knlGS:0000000000000000
2021-04-24T18:03:53.804323Z WARNING kernel: [ 516.876928] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
2021-04-24T18:03:53.804324Z WARNING kernel: [ 516.876929] CR2: 0000239514955000 CR3: 00000007f82da001 CR4: 0000000000760ee0
2021-04-24T18:03:53.804325Z WARNING kernel: [ 516.876930] PKRU: 55555554
2021-04-24T18:03:53.804325Z WARNING kernel: [ 516.876931] Call Trace:
2021-04-24T18:03:53.804326Z WARNING kernel: [ 516.876935] __active_retire+0x77/0xcf
2021-04-24T18:03:53.804326Z WARNING kernel: [ 516.876939] process_one_work+0x1da/0x394
2021-04-24T18:03:53.804327Z WARNING kernel: [ 516.876941] worker_thread+0x216/0x375
2021-04-24T18:03:53.804327Z WARNING kernel: [ 516.876944] kthread+0x147/0x156
2021-04-24T18:03:53.804335Z WARNING kernel: [ 516.876946] ? pr_cont_work+0x58/0x58
2021-04-24T18:03:53.804335Z WARNING kernel: [ 516.876948] ? kthread_blkcg+0x2e/0x2e
2021-04-24T18:03:53.804336Z WARNING kernel: [ 516.876950] ret_from_fork+0x1f/0x40
2021-04-24T18:03:53.804336Z WARNING kernel: [ 516.876952] Modules linked in: cdc_mbim cdc_ncm cdc_wdm xt_cgroup rfcomm cmac algif_hash algif_skcipher af_alg xt_MASQUERADE uinput snd_soc_rt5682_sdw snd_soc_rt5682 snd_soc_max98373_sdw snd_soc_max98373 snd_soc_rl6231 regmap_sdw snd_soc_sof_sdw snd_soc_hdac_hdmi snd_soc_dmic snd_hda_codec_hdmi snd_sof_pci snd_sof_intel_hda_common intel_ipu6_psys snd_sof_xtensa_dsp soundwire_intel soundwire_generic_allocation soundwire_cadence snd_sof_intel_hda snd_sof snd_soc_hdac_hda snd_soc_acpi_intel_match snd_soc_acpi snd_hda_ext_core soundwire_bus snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hwdep snd_hda_core intel_ipu6_isys videobuf2_dma_contig videobuf2_v4l2 videobuf2_common videobuf2_memops mei_hdcp intel_ipu6 ov2740 ov8856 at24 sx9310 dw9768 v4l2_fwnode cros_ec_typec intel_pmc_mux roles acpi_als typec fuse iio_trig_sysfs cros_ec_light_prox cros_ec_lid_angle cros_ec_sensors cros
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix unconditional security_locked_down() call
Currently, the lockdown state is queried unconditionally, even though
its result is used only if the PERF_SAMPLE_REGS_INTR bit is set in
attr.sample_type. While that doesn't matter in case of the Lockdown LSM,
it causes trouble with the SELinux's lockdown hook implementation.
SELinux implements the locked_down hook with a check whether the current
task's type has the corresponding "lockdown" class permission
("integrity" or "confidentiality") allowed in the policy. This means
that calling the hook when the access control decision would be ignored
generates a bogus permission check and audit record.
Fix this by checking sample_type first and only calling the hook when
its result would be honored. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: pci_generic: Remove WQ_MEM_RECLAIM flag from state workqueue
A recent change created a dedicated workqueue for the state-change work
with WQ_HIGHPRI (no strong reason for that) and WQ_MEM_RECLAIM flags,
but the state-change work (mhi_pm_st_worker) does not guarantee forward
progress under memory pressure, and will even wait on various memory
allocations when e.g. creating devices, loading firmware, etc... The
work is then not part of a memory reclaim path...
Moreover, this causes a warning in check_flush_dependency() since we end
up in code that flushes a non-reclaim workqueue:
[ 40.969601] workqueue: WQ_MEM_RECLAIM mhi_hiprio_wq:mhi_pm_st_worker [mhi] is flushing !WQ_MEM_RECLAIM events_highpri:flush_backlog
[ 40.969612] WARNING: CPU: 4 PID: 158 at kernel/workqueue.c:2607 check_flush_dependency+0x11c/0x140
[ 40.969733] Call Trace:
[ 40.969740] __flush_work+0x97/0x1d0
[ 40.969745] ? wake_up_process+0x15/0x20
[ 40.969749] ? insert_work+0x70/0x80
[ 40.969750] ? __queue_work+0x14a/0x3e0
[ 40.969753] flush_work+0x10/0x20
[ 40.969756] rollback_registered_many+0x1c9/0x510
[ 40.969759] unregister_netdevice_queue+0x94/0x120
[ 40.969761] unregister_netdev+0x1d/0x30
[ 40.969765] mhi_net_remove+0x1a/0x40 [mhi_net]
[ 40.969770] mhi_driver_remove+0x124/0x250 [mhi]
[ 40.969776] device_release_driver_internal+0xf0/0x1d0
[ 40.969778] device_release_driver+0x12/0x20
[ 40.969782] bus_remove_device+0xe1/0x150
[ 40.969786] device_del+0x17b/0x3e0
[ 40.969791] mhi_destroy_device+0x9a/0x100 [mhi]
[ 40.969796] ? mhi_unmap_single_use_bb+0x50/0x50 [mhi]
[ 40.969799] device_for_each_child+0x5e/0xa0
[ 40.969804] mhi_pm_st_worker+0x921/0xf50 [mhi] |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-vdpa: fix vm_flags for virtqueue doorbell mapping
The virtqueue doorbell is usually implemented via registeres but we
don't provide the necessary vma->flags like VM_PFNMAP. This may cause
several issues e.g when userspace tries to map the doorbell via vhost
IOTLB, kernel may panic due to the page is not backed by page
structure. This patch fixes this by setting the necessary
vm_flags. With this patch, try to map doorbell via IOTLB will fail
with bad address. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3: Do not enable irqs when handling spurious interrups
We triggered the following error while running our 4.19 kernel
with the pseudo-NMI patches backported to it:
[ 14.816231] ------------[ cut here ]------------
[ 14.816231] kernel BUG at irq.c:99!
[ 14.816232] Internal error: Oops - BUG: 0 [#1] SMP
[ 14.816232] Process swapper/0 (pid: 0, stack limit = 0x(____ptrval____))
[ 14.816233] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 4.19.95.aarch64 #14
[ 14.816233] Hardware name: evb (DT)
[ 14.816234] pstate: 80400085 (Nzcv daIf +PAN -UAO)
[ 14.816234] pc : asm_nmi_enter+0x94/0x98
[ 14.816235] lr : asm_nmi_enter+0x18/0x98
[ 14.816235] sp : ffff000008003c50
[ 14.816235] pmr_save: 00000070
[ 14.816237] x29: ffff000008003c50 x28: ffff0000095f56c0
[ 14.816238] x27: 0000000000000000 x26: ffff000008004000
[ 14.816239] x25: 00000000015e0000 x24: ffff8008fb916000
[ 14.816240] x23: 0000000020400005 x22: ffff0000080817cc
[ 14.816241] x21: ffff000008003da0 x20: 0000000000000060
[ 14.816242] x19: 00000000000003ff x18: ffffffffffffffff
[ 14.816243] x17: 0000000000000008 x16: 003d090000000000
[ 14.816244] x15: ffff0000095ea6c8 x14: ffff8008fff5ab40
[ 14.816244] x13: ffff8008fff58b9d x12: 0000000000000000
[ 14.816245] x11: ffff000008c8a200 x10: 000000008e31fca5
[ 14.816246] x9 : ffff000008c8a208 x8 : 000000000000000f
[ 14.816247] x7 : 0000000000000004 x6 : ffff8008fff58b9e
[ 14.816248] x5 : 0000000000000000 x4 : 0000000080000000
[ 14.816249] x3 : 0000000000000000 x2 : 0000000080000000
[ 14.816250] x1 : 0000000000120000 x0 : ffff0000095f56c0
[ 14.816251] Call trace:
[ 14.816251] asm_nmi_enter+0x94/0x98
[ 14.816251] el1_irq+0x8c/0x180 (IRQ C)
[ 14.816252] gic_handle_irq+0xbc/0x2e4
[ 14.816252] el1_irq+0xcc/0x180 (IRQ B)
[ 14.816253] arch_timer_handler_virt+0x38/0x58
[ 14.816253] handle_percpu_devid_irq+0x90/0x240
[ 14.816253] generic_handle_irq+0x34/0x50
[ 14.816254] __handle_domain_irq+0x68/0xc0
[ 14.816254] gic_handle_irq+0xf8/0x2e4
[ 14.816255] el1_irq+0xcc/0x180 (IRQ A)
[ 14.816255] arch_cpu_idle+0x34/0x1c8
[ 14.816255] default_idle_call+0x24/0x44
[ 14.816256] do_idle+0x1d0/0x2c8
[ 14.816256] cpu_startup_entry+0x28/0x30
[ 14.816256] rest_init+0xb8/0xc8
[ 14.816257] start_kernel+0x4c8/0x4f4
[ 14.816257] Code: 940587f1 d5384100 b9401001 36a7fd01 (d4210000)
[ 14.816258] Modules linked in: start_dp(O) smeth(O)
[ 15.103092] ---[ end trace 701753956cb14aa8 ]---
[ 15.103093] Kernel panic - not syncing: Fatal exception in interrupt
[ 15.103099] SMP: stopping secondary CPUs
[ 15.103100] Kernel Offset: disabled
[ 15.103100] CPU features: 0x36,a2400218
[ 15.103100] Memory Limit: none
which is cause by a 'BUG_ON(in_nmi())' in nmi_enter().
From the call trace, we can find three interrupts (noted A, B, C above):
interrupt (A) is preempted by (B), which is further interrupted by (C).
Subsequent investigations show that (B) results in nmi_enter() being
called, but that it actually is a spurious interrupt. Furthermore,
interrupts are reenabled in the context of (B), and (C) fires with
NMI priority. We end-up with a nested NMI situation, something
we definitely do not want to (and cannot) handle.
The bug here is that spurious interrupts should never result in any
state change, and we should just return to the interrupted context.
Moving the handling of spurious interrupts as early as possible in
the GICv3 handler fixes this issue.
[maz: rewrote commit message, corrected Fixes: tag] |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Return correct error code from smb2_get_enc_key
Avoid a warning if the error percolates back up:
[440700.376476] CIFS VFS: \\otters.example.com crypt_message: Could not get encryption key
[440700.386947] ------------[ cut here ]------------
[440700.386948] err = 1
[440700.386977] WARNING: CPU: 11 PID: 2733 at /build/linux-hwe-5.4-p6lk6L/linux-hwe-5.4-5.4.0/lib/errseq.c:74 errseq_set+0x5c/0x70
...
[440700.397304] CPU: 11 PID: 2733 Comm: tar Tainted: G OE 5.4.0-70-generic #78~18.04.1-Ubuntu
...
[440700.397334] Call Trace:
[440700.397346] __filemap_set_wb_err+0x1a/0x70
[440700.397419] cifs_writepages+0x9c7/0xb30 [cifs]
[440700.397426] do_writepages+0x4b/0xe0
[440700.397444] __filemap_fdatawrite_range+0xcb/0x100
[440700.397455] filemap_write_and_wait+0x42/0xa0
[440700.397486] cifs_setattr+0x68b/0xf30 [cifs]
[440700.397493] notify_change+0x358/0x4a0
[440700.397500] utimes_common+0xe9/0x1c0
[440700.397510] do_utimes+0xc5/0x150
[440700.397520] __x64_sys_utimensat+0x88/0xd0 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv/kprobe: fix kernel panic when invoking sys_read traced by kprobe
The execution of sys_read end up hitting a BUG_ON() in __find_get_block
after installing kprobe at sys_read, the BUG message like the following:
[ 65.708663] ------------[ cut here ]------------
[ 65.709987] kernel BUG at fs/buffer.c:1251!
[ 65.711283] Kernel BUG [#1]
[ 65.712032] Modules linked in:
[ 65.712925] CPU: 0 PID: 51 Comm: sh Not tainted 5.12.0-rc4 #1
[ 65.714407] Hardware name: riscv-virtio,qemu (DT)
[ 65.715696] epc : __find_get_block+0x218/0x2c8
[ 65.716835] ra : __getblk_gfp+0x1c/0x4a
[ 65.717831] epc : ffffffe00019f11e ra : ffffffe00019f56a sp : ffffffe002437930
[ 65.719553] gp : ffffffe000f06030 tp : ffffffe0015abc00 t0 : ffffffe00191e038
[ 65.721290] t1 : ffffffe00191e038 t2 : 000000000000000a s0 : ffffffe002437960
[ 65.723051] s1 : ffffffe00160ad00 a0 : ffffffe00160ad00 a1 : 000000000000012a
[ 65.724772] a2 : 0000000000000400 a3 : 0000000000000008 a4 : 0000000000000040
[ 65.726545] a5 : 0000000000000000 a6 : ffffffe00191e000 a7 : 0000000000000000
[ 65.728308] s2 : 000000000000012a s3 : 0000000000000400 s4 : 0000000000000008
[ 65.730049] s5 : 000000000000006c s6 : ffffffe00240f800 s7 : ffffffe000f080a8
[ 65.731802] s8 : 0000000000000001 s9 : 000000000000012a s10: 0000000000000008
[ 65.733516] s11: 0000000000000008 t3 : 00000000000003ff t4 : 000000000000000f
[ 65.734434] t5 : 00000000000003ff t6 : 0000000000040000
[ 65.734613] status: 0000000000000100 badaddr: 0000000000000000 cause: 0000000000000003
[ 65.734901] Call Trace:
[ 65.735076] [<ffffffe00019f11e>] __find_get_block+0x218/0x2c8
[ 65.735417] [<ffffffe00020017a>] __ext4_get_inode_loc+0xb2/0x2f6
[ 65.735618] [<ffffffe000201b6c>] ext4_get_inode_loc+0x3a/0x8a
[ 65.735802] [<ffffffe000203380>] ext4_reserve_inode_write+0x2e/0x8c
[ 65.735999] [<ffffffe00020357a>] __ext4_mark_inode_dirty+0x4c/0x18e
[ 65.736208] [<ffffffe000206bb0>] ext4_dirty_inode+0x46/0x66
[ 65.736387] [<ffffffe000192914>] __mark_inode_dirty+0x12c/0x3da
[ 65.736576] [<ffffffe000180dd2>] touch_atime+0x146/0x150
[ 65.736748] [<ffffffe00010d762>] filemap_read+0x234/0x246
[ 65.736920] [<ffffffe00010d834>] generic_file_read_iter+0xc0/0x114
[ 65.737114] [<ffffffe0001f5d7a>] ext4_file_read_iter+0x42/0xea
[ 65.737310] [<ffffffe000163f2c>] new_sync_read+0xe2/0x15a
[ 65.737483] [<ffffffe000165814>] vfs_read+0xca/0xf2
[ 65.737641] [<ffffffe000165bae>] ksys_read+0x5e/0xc8
[ 65.737816] [<ffffffe000165c26>] sys_read+0xe/0x16
[ 65.737973] [<ffffffe000003972>] ret_from_syscall+0x0/0x2
[ 65.738858] ---[ end trace fe93f985456c935d ]---
A simple reproducer looks like:
echo 'p:myprobe sys_read fd=%a0 buf=%a1 count=%a2' > /sys/kernel/debug/tracing/kprobe_events
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable
cat /sys/kernel/debug/tracing/trace
Here's what happens to hit that BUG_ON():
1) After installing kprobe at entry of sys_read, the first instruction
is replaced by 'ebreak' instruction on riscv64 platform.
2) Once kernel reach the 'ebreak' instruction at the entry of sys_read,
it trap into the riscv breakpoint handler, where it do something to
setup for coming single-step of origin instruction, including backup
the 'sstatus' in pt_regs, followed by disable interrupt during single
stepping via clear 'SIE' bit of 'sstatus' in pt_regs.
3) Then kernel restore to the instruction slot contains two instructions,
one is original instruction at entry of sys_read, the other is 'ebreak'.
Here it trigger a 'Instruction page fault' exception (value at 'scause'
is '0xc'), if PF is not filled into PageTabe for that slot yet.
4) Again kernel trap into page fault exception handler, where it choose
different policy according to the state of running kprobe. Because
afte 2) the state is KPROBE_HIT_SS, so kernel reset the current kp
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: GTDT: Don't corrupt interrupt mappings on watchdow probe failure
When failing the driver probe because of invalid firmware properties,
the GTDT driver unmaps the interrupt that it mapped earlier.
However, it never checks whether the mapping of the interrupt actially
succeeded. Even more, should the firmware report an illegal interrupt
number that overlaps with the GIC SGI range, this can result in an
IPI being unmapped, and subsequent fireworks (as reported by Dann
Frazier).
Rework the driver to have a slightly saner behaviour and actually
check whether the interrupt has been mapped before unmapping things. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: always panic when errors=panic is specified
Before commit 014c9caa29d3 ("ext4: make ext4_abort() use
__ext4_error()"), the following series of commands would trigger a
panic:
1. mount /dev/sda -o ro,errors=panic test
2. mount /dev/sda -o remount,abort test
After commit 014c9caa29d3, remounting a file system using the test
mount option "abort" will no longer trigger a panic. This commit will
restore the behaviour immediately before commit 014c9caa29d3.
(However, note that the Linux kernel's behavior has not been
consistent; some previous kernel versions, including 5.4 and 4.19
similarly did not panic after using the mount option "abort".)
This also makes a change to long-standing behaviour; namely, the
following series commands will now cause a panic, when previously it
did not:
1. mount /dev/sda -o ro,errors=panic test
2. echo test > /sys/fs/ext4/sda/trigger_fs_error
However, this makes ext4's behaviour much more consistent, so this is
a good thing. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix shared sqpoll cancellation hangs
[ 736.982891] INFO: task iou-sqp-4294:4295 blocked for more than 122 seconds.
[ 736.982897] Call Trace:
[ 736.982901] schedule+0x68/0xe0
[ 736.982903] io_uring_cancel_sqpoll+0xdb/0x110
[ 736.982908] io_sqpoll_cancel_cb+0x24/0x30
[ 736.982911] io_run_task_work_head+0x28/0x50
[ 736.982913] io_sq_thread+0x4e3/0x720
We call io_uring_cancel_sqpoll() one by one for each ctx either in
sq_thread() itself or via task works, and it's intended to cancel all
requests of a specified context. However the function uses per-task
counters to track the number of inflight requests, so it counts more
requests than available via currect io_uring ctx and goes to sleep for
them to appear (e.g. from IRQ), that will never happen.
Cancel a bit more than before, i.e. all ctxs that share sqpoll
and continue to use shared counters. Don't forget that we should not
remove ctx from the list before running that task_work sqpoll-cancel,
otherwise the function wouldn't be able to find the context and will
hang. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: Do core softreset when switch mode
According to the programming guide, to switch mode for DRD controller,
the driver needs to do the following.
To switch from device to host:
1. Reset controller with GCTL.CoreSoftReset
2. Set GCTL.PrtCapDir(host mode)
3. Reset the host with USBCMD.HCRESET
4. Then follow up with the initializing host registers sequence
To switch from host to device:
1. Reset controller with GCTL.CoreSoftReset
2. Set GCTL.PrtCapDir(device mode)
3. Reset the device with DCTL.CSftRst
4. Then follow up with the initializing registers sequence
Currently we're missing step 1) to do GCTL.CoreSoftReset and step 3) of
switching from host to device. John Stult reported a lockup issue seen
with HiKey960 platform without these steps[1]. Similar issue is observed
with Ferry's testing platform[2].
So, apply the required steps along with some fixes to Yu Chen's and John
Stultz's version. The main fixes to their versions are the missing wait
for clocks synchronization before clearing GCTL.CoreSoftReset and only
apply DCTL.CSftRst when switching from host to device.
[1] https://lore.kernel.org/linux-usb/20210108015115.27920-1-john.stultz@linaro.org/
[2] https://lore.kernel.org/linux-usb/0ba7a6ba-e6a7-9cd4-0695-64fc927e01f1@gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: Fix TPM reservation for seal/unseal
The original patch 8c657a0590de ("KEYS: trusted: Reserve TPM for seal
and unseal operations") was correct on the mailing list:
https://lore.kernel.org/linux-integrity/20210128235621.127925-4-jarkko@kernel.org/
But somehow got rebased so that the tpm_try_get_ops() in
tpm2_seal_trusted() got lost. This causes an imbalanced put of the
TPM ops and causes oopses on TIS based hardware.
This fix puts back the lost tpm_try_get_ops() |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix clobbering of SWERR overflow bit on writeback
Current code blindly writes over the SWERR and the OVERFLOW bits. Write
back the bits actually read instead so the driver avoids clobbering the
OVERFLOW bit that comes after the register is read. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix wq size store permission state
WQ size can only be changed when the device is disabled. Current code
allows change when device is enabled but wq is disabled. Change the check
to detect device state. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: clear MSIX permission entry on shutdown
Add disabling/clearing of MSIX permission entries on device shutdown to
mirror the enabling of the MSIX entries on probe. Current code left the
MSIX enabled and the pasid entries still programmed at device shutdown. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: clone set element expression template
memcpy() breaks when using connlimit in set elements. Use
nft_expr_clone() to initialize the connlimit expression list, otherwise
connlimit garbage collector crashes when walking on the list head copy.
[ 493.064656] Workqueue: events_power_efficient nft_rhash_gc [nf_tables]
[ 493.064685] RIP: 0010:find_or_evict+0x5a/0x90 [nf_conncount]
[ 493.064694] Code: 2b 43 40 83 f8 01 77 0d 48 c7 c0 f5 ff ff ff 44 39 63 3c 75 df 83 6d 18 01 48 8b 43 08 48 89 de 48 8b 13 48 8b 3d ee 2f 00 00 <48> 89 42 08 48 89 10 48 b8 00 01 00 00 00 00 ad de 48 89 03 48 83
[ 493.064699] RSP: 0018:ffffc90000417dc0 EFLAGS: 00010297
[ 493.064704] RAX: 0000000000000000 RBX: ffff888134f38410 RCX: 0000000000000000
[ 493.064708] RDX: 0000000000000000 RSI: ffff888134f38410 RDI: ffff888100060cc0
[ 493.064711] RBP: ffff88812ce594a8 R08: ffff888134f38438 R09: 00000000ebb9025c
[ 493.064714] R10: ffffffff8219f838 R11: 0000000000000017 R12: 0000000000000001
[ 493.064718] R13: ffffffff82146740 R14: ffff888134f38410 R15: 0000000000000000
[ 493.064721] FS: 0000000000000000(0000) GS:ffff88840e440000(0000) knlGS:0000000000000000
[ 493.064725] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 493.064729] CR2: 0000000000000008 CR3: 00000001330aa002 CR4: 00000000001706e0
[ 493.064733] Call Trace:
[ 493.064737] nf_conncount_gc_list+0x8f/0x150 [nf_conncount]
[ 493.064746] nft_rhash_gc+0x106/0x390 [nf_tables] |
| In the Linux kernel, the following vulnerability has been resolved:
ch_ktls: Fix kernel panic
Taking page refcount is not ideal and causes kernel panic
sometimes. It's better to take tx_ctx lock for the complete
skb transmit, to avoid page cleanup if ACK received in middle. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: 9063/1: mm: reduce maximum number of CPUs if DEBUG_KMAP_LOCAL is enabled
The debugging code for kmap_local() doubles the number of per-CPU fixmap
slots allocated for kmap_local(), in order to use half of them as guard
regions. This causes the fixmap region to grow downwards beyond the start
of its reserved window if the supported number of CPUs is large, and collide
with the newly added virtual DT mapping right below it, which is obviously
not good.
One manifestation of this is EFI boot on a kernel built with NR_CPUS=32
and CONFIG_DEBUG_KMAP_LOCAL=y, which may pass the FDT in highmem, resulting
in block entries below the fixmap region that the fixmap code misidentifies
as fixmap table entries, and subsequently tries to dereference using a
phys-to-virt translation that is only valid for lowmem. This results in a
cryptic splat such as the one below.
ftrace: allocating 45548 entries in 89 pages
8<--- cut here ---
Unable to handle kernel paging request at virtual address fc6006f0
pgd = (ptrval)
[fc6006f0] *pgd=80000040207003, *pmd=00000000
Internal error: Oops: a06 [#1] SMP ARM
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 5.11.0+ #382
Hardware name: Generic DT based system
PC is at cpu_ca15_set_pte_ext+0x24/0x30
LR is at __set_fixmap+0xe4/0x118
pc : [<c041ac9c>] lr : [<c04189d8>] psr: 400000d3
sp : c1601ed8 ip : 00400000 fp : 00800000
r10: 0000071f r9 : 00421000 r8 : 00c00000
r7 : 00c00000 r6 : 0000071f r5 : ffade000 r4 : 4040171f
r3 : 00c00000 r2 : 4040171f r1 : c041ac78 r0 : fc6006f0
Flags: nZcv IRQs off FIQs off Mode SVC_32 ISA ARM Segment none
Control: 30c5387d Table: 40203000 DAC: 00000001
Process swapper (pid: 0, stack limit = 0x(ptrval))
So let's limit CONFIG_NR_CPUS to 16 when CONFIG_DEBUG_KMAP_LOCAL=y. Also,
fix the BUILD_BUG_ON() check that was supposed to catch this, by checking
whether the region grows below the start address rather than above the end
address. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Use correct permission flag for mixed signed bounds arithmetic
We forbid adding unknown scalars with mixed signed bounds due to the
spectre v1 masking mitigation. Hence this also needs bypass_spec_v1
flag instead of allow_ptr_leaks. |