| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: just wait for more data to be available on the socket
A short read may occur while reading the message footer from the
socket. Later, when the socket is ready for another read, the
messenger invokes all read_partial_*() handlers, including
read_partial_sparse_msg_data(). The expectation is that
read_partial_sparse_msg_data() would bail, allowing the messenger to
invoke read_partial() for the footer and pick up where it left off.
However read_partial_sparse_msg_data() violates that and ends up
calling into the state machine in the OSD client. The sparse-read
state machine assumes that it's a new op and interprets some piece of
the footer as the sparse-read header and returns bogus extents/data
length, etc.
To determine whether read_partial_sparse_msg_data() should bail, let's
reuse cursor->total_resid. Because once it reaches to zero that means
all the extents and data have been successfully received in last read,
else it could break out when partially reading any of the extents and
data. And then osd_sparse_read() could continue where it left off.
[ idryomov: changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix disable_otg_wa logic
[Why]
When switching to another HDMI mode, we are unnecesarilly
disabling/enabling FIFO causing both HPO and DIG registers to be set at
the same time when only HPO is supposed to be set.
This can lead to a system hang the next time we change refresh rates as
there are cases when we don't disable OTG/FIFO but FIFO is enabled when
it isn't supposed to be.
[How]
Removing the enable/disable FIFO entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: lib/mpi - Fix unexpected pointer access in mpi_ec_init
When the mpi_ec_ctx structure is initialized, some fields are not
cleared, causing a crash when referencing the field when the
structure was released. Initially, this issue was ignored because
memory for mpi_ec_ctx is allocated with the __GFP_ZERO flag.
For example, this error will be triggered when calculating the
Za value for SM2 separately. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: sdio: Honor the host max_req_size in the RX path
Lukas reports skb_over_panic errors on his Banana Pi BPI-CM4 which comes
with an Amlogic A311D (G12B) SoC and a RTL8822CS SDIO wifi/Bluetooth
combo card. The error he observed is identical to what has been fixed
in commit e967229ead0e ("wifi: rtw88: sdio: Check the HISR RX_REQUEST
bit in rtw_sdio_rx_isr()") but that commit didn't fix Lukas' problem.
Lukas found that disabling or limiting RX aggregation works around the
problem for some time (but does not fully fix it). In the following
discussion a few key topics have been discussed which have an impact on
this problem:
- The Amlogic A311D (G12B) SoC has a hardware bug in the SDIO controller
which prevents DMA transfers. Instead all transfers need to go through
the controller SRAM which limits transfers to 1536 bytes
- rtw88 chips don't split incoming (RX) packets, so if a big packet is
received this is forwarded to the host in it's original form
- rtw88 chips can do RX aggregation, meaning more multiple incoming
packets can be pulled by the host from the card with one MMC/SDIO
transfer. This Depends on settings in the REG_RXDMA_AGG_PG_TH
register (BIT_RXDMA_AGG_PG_TH limits the number of packets that will
be aggregated, BIT_DMA_AGG_TO_V1 configures a timeout for aggregation
and BIT_EN_PRE_CALC makes the chip honor the limits more effectively)
Use multiple consecutive reads in rtw_sdio_read_port() and limit the
number of bytes which are copied by the host from the card in one
MMC/SDIO transfer. This allows receiving a buffer that's larger than
the hosts max_req_size (number of bytes which can be transferred in
one MMC/SDIO transfer). As a result of this the skb_over_panic error
is gone as the rtw88 driver is now able to receive more than 1536 bytes
from the card (either because the incoming packet is larger than that
or because multiple packets have been aggregated).
In case of an receive errors (-EILSEQ has been observed by Lukas) we
need to drain the remaining data from the card's buffer, otherwise the
card will return corrupt data for the next rtw_sdio_read_port() call. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Only call folio_start_fscache() one time for each folio
If a network filesystem using netfs implements a clamp_length()
function, it can set subrequest lengths smaller than a page size.
When we loop through the folios in netfs_rreq_unlock_folios() to
set any folios to be written back, we need to make sure we only
call folio_start_fscache() once for each folio.
Otherwise, this simple testcase:
mount -o fsc,rsize=1024,wsize=1024 127.0.0.1:/export /mnt/nfs
dd if=/dev/zero of=/mnt/nfs/file.bin bs=4096 count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.0126359 s, 324 kB/s
echo 3 > /proc/sys/vm/drop_caches
cat /mnt/nfs/file.bin > /dev/null
will trigger an oops similar to the following:
page dumped because: VM_BUG_ON_FOLIO(folio_test_private_2(folio))
------------[ cut here ]------------
kernel BUG at include/linux/netfs.h:44!
...
CPU: 5 PID: 134 Comm: kworker/u16:5 Kdump: loaded Not tainted 6.4.0-rc5
...
RIP: 0010:netfs_rreq_unlock_folios+0x68e/0x730 [netfs]
...
Call Trace:
netfs_rreq_assess+0x497/0x660 [netfs]
netfs_subreq_terminated+0x32b/0x610 [netfs]
nfs_netfs_read_completion+0x14e/0x1a0 [nfs]
nfs_read_completion+0x2f9/0x330 [nfs]
rpc_free_task+0x72/0xa0 [sunrpc]
rpc_async_release+0x46/0x70 [sunrpc]
process_one_work+0x3bd/0x710
worker_thread+0x89/0x610
kthread+0x181/0x1c0
ret_from_fork+0x29/0x50 |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Avoid memory allocation in iommu_suspend()
The iommu_suspend() syscore suspend callback is invoked with IRQ disabled.
Allocating memory with the GFP_KERNEL flag may re-enable IRQs during
the suspend callback, which can cause intermittent suspend/hibernation
problems with the following kernel traces:
Calling iommu_suspend+0x0/0x1d0
------------[ cut here ]------------
WARNING: CPU: 0 PID: 15 at kernel/time/timekeeping.c:868 ktime_get+0x9b/0xb0
...
CPU: 0 PID: 15 Comm: rcu_preempt Tainted: G U E 6.3-intel #r1
RIP: 0010:ktime_get+0x9b/0xb0
...
Call Trace:
<IRQ>
tick_sched_timer+0x22/0x90
? __pfx_tick_sched_timer+0x10/0x10
__hrtimer_run_queues+0x111/0x2b0
hrtimer_interrupt+0xfa/0x230
__sysvec_apic_timer_interrupt+0x63/0x140
sysvec_apic_timer_interrupt+0x7b/0xa0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1f/0x30
...
------------[ cut here ]------------
Interrupts enabled after iommu_suspend+0x0/0x1d0
WARNING: CPU: 0 PID: 27420 at drivers/base/syscore.c:68 syscore_suspend+0x147/0x270
CPU: 0 PID: 27420 Comm: rtcwake Tainted: G U W E 6.3-intel #r1
RIP: 0010:syscore_suspend+0x147/0x270
...
Call Trace:
<TASK>
hibernation_snapshot+0x25b/0x670
hibernate+0xcd/0x390
state_store+0xcf/0xe0
kobj_attr_store+0x13/0x30
sysfs_kf_write+0x3f/0x50
kernfs_fop_write_iter+0x128/0x200
vfs_write+0x1fd/0x3c0
ksys_write+0x6f/0xf0
__x64_sys_write+0x1d/0x30
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Given that only 4 words memory is needed, avoid the memory allocation in
iommu_suspend(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: mana: Fix TX CQE error handling
For an unknown TX CQE error type (probably from a newer hardware),
still free the SKB, update the queue tail, etc., otherwise the
accounting will be wrong.
Also, TX errors can be triggered by injecting corrupted packets, so
replace the WARN_ONCE to ratelimited error logging. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/47x: Fix 47x syscall return crash
Eddie reported that newer kernels were crashing during boot on his 476
FSP2 system:
kernel tried to execute user page (b7ee2000) - exploit attempt? (uid: 0)
BUG: Unable to handle kernel instruction fetch
Faulting instruction address: 0xb7ee2000
Oops: Kernel access of bad area, sig: 11 [#1]
BE PAGE_SIZE=4K FSP-2
Modules linked in:
CPU: 0 PID: 61 Comm: mount Not tainted 6.1.55-d23900f.ppcnf-fsp2 #1
Hardware name: ibm,fsp2 476fpe 0x7ff520c0 FSP-2
NIP: b7ee2000 LR: 8c008000 CTR: 00000000
REGS: bffebd83 TRAP: 0400 Not tainted (6.1.55-d23900f.ppcnf-fs p2)
MSR: 00000030 <IR,DR> CR: 00001000 XER: 20000000
GPR00: c00110ac bffebe63 bffebe7e bffebe88 8c008000 00001000 00000d12 b7ee2000
GPR08: 00000033 00000000 00000000 c139df10 48224824 1016c314 10160000 00000000
GPR16: 10160000 10160000 00000008 00000000 10160000 00000000 10160000 1017f5b0
GPR24: 1017fa50 1017f4f0 1017fa50 1017f740 1017f630 00000000 00000000 1017f4f0
NIP [b7ee2000] 0xb7ee2000
LR [8c008000] 0x8c008000
Call Trace:
Instruction dump:
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
---[ end trace 0000000000000000 ]---
The problem is in ret_from_syscall where the check for
icache_44x_need_flush is done. When the flush is needed the code jumps
out-of-line to do the flush, and then intends to jump back to continue
the syscall return.
However the branch back to label 1b doesn't return to the correct
location, instead branching back just prior to the return to userspace,
causing bogus register values to be used by the rfi.
The breakage was introduced by commit 6f76a01173cc
("powerpc/syscall: implement system call entry/exit logic in C for PPC32") which
inadvertently removed the "1" label and reused it elsewhere.
Fix it by adding named local labels in the correct locations. Note that
the return label needs to be outside the ifdef so that CONFIG_PPC_47x=n
compiles. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sc16is7xx: convert from _raw_ to _noinc_ regmap functions for FIFO
The SC16IS7XX IC supports a burst mode to access the FIFOs where the
initial register address is sent ($00), followed by all the FIFO data
without having to resend the register address each time. In this mode, the
IC doesn't increment the register address for each R/W byte.
The regmap_raw_read() and regmap_raw_write() are functions which can
perform IO over multiple registers. They are currently used to read/write
from/to the FIFO, and although they operate correctly in this burst mode on
the SPI bus, they would corrupt the regmap cache if it was not disabled
manually. The reason is that when the R/W size is more than 1 byte, these
functions assume that the register address is incremented and handle the
cache accordingly.
Convert FIFO R/W functions to use the regmap _noinc_ versions in order to
remove the manual cache control which was a workaround when using the
_raw_ versions. FIFO registers are properly declared as volatile so
cache will not be used/updated for FIFO accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix bugs with non-PAGE_SIZE-end multi-iovec user SDMA requests
hfi1 user SDMA request processing has two bugs that can cause data
corruption for user SDMA requests that have multiple payload iovecs
where an iovec other than the tail iovec does not run up to the page
boundary for the buffer pointed to by that iovec.a
Here are the specific bugs:
1. user_sdma_txadd() does not use struct user_sdma_iovec->iov.iov_len.
Rather, user_sdma_txadd() will add up to PAGE_SIZE bytes from iovec
to the packet, even if some of those bytes are past
iovec->iov.iov_len and are thus not intended to be in the packet.
2. user_sdma_txadd() and user_sdma_send_pkts() fail to advance to the
next iovec in user_sdma_request->iovs when the current iovec
is not PAGE_SIZE and does not contain enough data to complete the
packet. The transmitted packet will contain the wrong data from the
iovec pages.
This has not been an issue with SDMA packets from hfi1 Verbs or PSM2
because they only produce iovecs that end short of PAGE_SIZE as the tail
iovec of an SDMA request.
Fixing these bugs exposes other bugs with the SDMA pin cache
(struct mmu_rb_handler) that get in way of supporting user SDMA requests
with multiple payload iovecs whose buffers do not end at PAGE_SIZE. So
this commit fixes those issues as well.
Here are the mmu_rb_handler bugs that non-PAGE_SIZE-end multi-iovec
payload user SDMA requests can hit:
1. Overlapping memory ranges in mmu_rb_handler will result in duplicate
pinnings.
2. When extending an existing mmu_rb_handler entry (struct mmu_rb_node),
the mmu_rb code (1) removes the existing entry under a lock, (2)
releases that lock, pins the new pages, (3) then reacquires the lock
to insert the extended mmu_rb_node.
If someone else comes in and inserts an overlapping entry between (2)
and (3), insert in (3) will fail.
The failure path code in this case unpins _all_ pages in either the
original mmu_rb_node or the new mmu_rb_node that was inserted between
(2) and (3).
3. In hfi1_mmu_rb_remove_unless_exact(), mmu_rb_node->refcount is
incremented outside of mmu_rb_handler->lock. As a result, mmu_rb_node
could be evicted by another thread that gets mmu_rb_handler->lock and
checks mmu_rb_node->refcount before mmu_rb_node->refcount is
incremented.
4. Related to #2 above, SDMA request submission failure path does not
check mmu_rb_node->refcount before freeing mmu_rb_node object.
If there are other SDMA requests in progress whose iovecs have
pointers to the now-freed mmu_rb_node(s), those pointers to the
now-freed mmu_rb nodes will be dereferenced when those SDMA requests
complete. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix check for attempt to corrupt spilled pointer
When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].
To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Fix bounds limiting when given a malformed entity
If we're given a malformed entity in drm_sched_entity_init()--shouldn't
happen, but we verify--with out-of-bounds priority value, we set it to an
allowed value. Fix the expression which sets this limit. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Don't reserve 0-length IOVA region
When the bootloader/firmware doesn't setup the framebuffers, their
address and size are 0 in "iommu-addresses" property. If IOVA region is
reserved with 0 length, then it ends up corrupting the IOVA rbtree with
an entry which has pfn_hi < pfn_lo.
If we intend to use display driver in kernel without framebuffer then
it's causing the display IOMMU mappings to fail as entire valid IOVA
space is reserved when address and length are passed as 0.
An ideal solution would be firmware removing the "iommu-addresses"
property and corresponding "memory-region" if display is not present.
But the kernel should be able to handle this by checking for size of
IOVA region and skipping the IOVA reservation if size is 0. Also, add
a warning if firmware is requesting 0-length IOVA region reservation. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/zswap: fix inconsistency when zswap_store_page() fails
Commit b7c0ccdfbafd ("mm: zswap: support large folios in zswap_store()")
skips charging any zswap entries when it failed to zswap the entire folio.
However, when some base pages are zswapped but it failed to zswap the
entire folio, the zswap operation is rolled back. When freeing zswap
entries for those pages, zswap_entry_free() uncharges the zswap entries
that were not previously charged, causing zswap charging to become
inconsistent.
This inconsistency triggers two warnings with following steps:
# On a machine with 64GiB of RAM and 36GiB of zswap
$ stress-ng --bigheap 2 # wait until the OOM-killer kills stress-ng
$ sudo reboot
The two warnings are:
in mm/memcontrol.c:163, function obj_cgroup_release():
WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
in mm/page_counter.c:60, function page_counter_cancel():
if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
new, nr_pages))
zswap_stored_pages also becomes inconsistent in the same way.
As suggested by Kanchana, increment zswap_stored_pages and charge zswap
entries within zswap_store_page() when it succeeds. This way,
zswap_entry_free() will decrement the counter and uncharge the entries
when it failed to zswap the entire folio.
While this could potentially be optimized by batching objcg charging and
incrementing the counter, let's focus on fixing the bug this time and
leave the optimization for later after some evaluation.
After resolving the inconsistency, the warnings disappear.
[42.hyeyoo@gmail.com: refactor zswap_store_page()] |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: virtio: fix completion handling
The driver currently assumes that the notify callback is only received
when the device is done with all the queued buffers.
However, this is not true, since the notify callback could be called
without any of the queued buffers being completed (for example, with
virtio-pci and shared interrupts) or with only some of the buffers being
completed (since the driver makes them available to the device in
multiple separate virtqueue_add_sgs() calls).
This can lead to incorrect data on the I2C bus or memory corruption in
the guest if the device operates on buffers which are have been freed by
the driver. (The WARN_ON in the driver is also triggered.)
BUG kmalloc-128 (Tainted: G W ): Poison overwritten
First byte 0x0 instead of 0x6b
Allocated in i2cdev_ioctl_rdwr+0x9d/0x1de age=243 cpu=0 pid=28
memdup_user+0x2e/0xbd
i2cdev_ioctl_rdwr+0x9d/0x1de
i2cdev_ioctl+0x247/0x2ed
vfs_ioctl+0x21/0x30
sys_ioctl+0xb18/0xb41
Freed in i2cdev_ioctl_rdwr+0x1bb/0x1de age=68 cpu=0 pid=28
kfree+0x1bd/0x1cc
i2cdev_ioctl_rdwr+0x1bb/0x1de
i2cdev_ioctl+0x247/0x2ed
vfs_ioctl+0x21/0x30
sys_ioctl+0xb18/0xb41
Fix this by calling virtio_get_buf() from the notify handler like other
virtio drivers and by actually waiting for all the buffers to be
completed. |
| In the Linux kernel, the following vulnerability has been resolved:
mac80211: validate extended element ID is present
Before attempting to parse an extended element, verify that
the extended element ID is present. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix kernel address leakage in atomic fetch
The change in commit 37086bfdc737 ("bpf: Propagate stack bounds to registers
in atomics w/ BPF_FETCH") around check_mem_access() handling is buggy since
this would allow for unprivileged users to leak kernel pointers. For example,
an atomic fetch/and with -1 on a stack destination which holds a spilled
pointer will migrate the spilled register type into a scalar, which can then
be exported out of the program (since scalar != pointer) by dumping it into
a map value.
The original implementation of XADD was preventing this situation by using
a double call to check_mem_access() one with BPF_READ and a subsequent one
with BPF_WRITE, in both cases passing -1 as a placeholder value instead of
register as per XADD semantics since it didn't contain a value fetch. The
BPF_READ also included a check in check_stack_read_fixed_off() which rejects
the program if the stack slot is of __is_pointer_value() if dst_regno < 0.
The latter is to distinguish whether we're dealing with a regular stack spill/
fill or some arithmetical operation which is disallowed on non-scalars, see
also 6e7e63cbb023 ("bpf: Forbid XADD on spilled pointers for unprivileged
users") for more context on check_mem_access() and its handling of placeholder
value -1.
One minimally intrusive option to fix the leak is for the BPF_FETCH case to
initially check the BPF_READ case via check_mem_access() with -1 as register,
followed by the actual load case with non-negative load_reg to propagate
stack bounds to registers. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix kernel address leakage in atomic cmpxchg's r0 aux reg
The implementation of BPF_CMPXCHG on a high level has the following parameters:
.-[old-val] .-[new-val]
BPF_R0 = cmpxchg{32,64}(DST_REG + insn->off, BPF_R0, SRC_REG)
`-[mem-loc] `-[old-val]
Given a BPF insn can only have two registers (dst, src), the R0 is fixed and
used as an auxilliary register for input (old value) as well as output (returning
old value from memory location). While the verifier performs a number of safety
checks, it misses to reject unprivileged programs where R0 contains a pointer as
old value.
Through brute-forcing it takes about ~16sec on my machine to leak a kernel pointer
with BPF_CMPXCHG. The PoC is basically probing for kernel addresses by storing the
guessed address into the map slot as a scalar, and using the map value pointer as
R0 while SRC_REG has a canary value to detect a matching address.
Fix it by checking R0 for pointers, and reject if that's the case for unprivileged
programs. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_ets: don't remove idle classes from the round-robin list
Shuang reported that the following script:
1) tc qdisc add dev ddd0 handle 10: parent 1: ets bands 8 strict 4 priomap 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2) mausezahn ddd0 -A 10.10.10.1 -B 10.10.10.2 -c 0 -a own -b 00:c1:a0:c1:a0:00 -t udp &
3) tc qdisc change dev ddd0 handle 10: ets bands 4 strict 2 quanta 2500 2500 priomap 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
crashes systematically when line 2) is commented:
list_del corruption, ffff8e028404bd30->next is LIST_POISON1 (dead000000000100)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:47!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 954 Comm: tc Not tainted 5.16.0-rc4+ #478
Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014
RIP: 0010:__list_del_entry_valid.cold.1+0x12/0x47
Code: fe ff 0f 0b 48 89 c1 4c 89 c6 48 c7 c7 08 42 1b 87 e8 1d c5 fe ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 98 42 1b 87 e8 09 c5 fe ff <0f> 0b 48 c7 c7 48 43 1b 87 e8 fb c4 fe ff 0f 0b 48 89 f2 48 89 fe
RSP: 0018:ffffae46807a3888 EFLAGS: 00010246
RAX: 000000000000004e RBX: 0000000000000007 RCX: 0000000000000202
RDX: 0000000000000000 RSI: ffffffff871ac536 RDI: 00000000ffffffff
RBP: ffffae46807a3a10 R08: 0000000000000000 R09: c0000000ffff7fff
R10: 0000000000000001 R11: ffffae46807a36a8 R12: ffff8e028404b800
R13: ffff8e028404bd30 R14: dead000000000100 R15: ffff8e02fafa2400
FS: 00007efdc92e4480(0000) GS:ffff8e02fb600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000682f48 CR3: 00000001058be000 CR4: 0000000000350ef0
Call Trace:
<TASK>
ets_qdisc_change+0x58b/0xa70 [sch_ets]
tc_modify_qdisc+0x323/0x880
rtnetlink_rcv_msg+0x169/0x4a0
netlink_rcv_skb+0x50/0x100
netlink_unicast+0x1a5/0x280
netlink_sendmsg+0x257/0x4d0
sock_sendmsg+0x5b/0x60
____sys_sendmsg+0x1f2/0x260
___sys_sendmsg+0x7c/0xc0
__sys_sendmsg+0x57/0xa0
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7efdc8031338
Code: 89 02 48 c7 c0 ff ff ff ff eb b5 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 8d 05 25 43 2c 00 8b 00 85 c0 75 17 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 41 54 41 89 d4 55
RSP: 002b:00007ffdf1ce9828 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 0000000061b37a97 RCX: 00007efdc8031338
RDX: 0000000000000000 RSI: 00007ffdf1ce9890 RDI: 0000000000000003
RBP: 0000000000000000 R08: 0000000000000001 R09: 000000000078a940
R10: 000000000000000c R11: 0000000000000246 R12: 0000000000000001
R13: 0000000000688880 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Modules linked in: sch_ets sch_tbf dummy rfkill iTCO_wdt iTCO_vendor_support intel_rapl_msr intel_rapl_common joydev pcspkr i2c_i801 virtio_balloon i2c_smbus lpc_ich ip_tables xfs libcrc32c crct10dif_pclmul crc32_pclmul crc32c_intel serio_raw ghash_clmulni_intel ahci libahci libata virtio_blk virtio_console virtio_net net_failover failover sunrpc dm_mirror dm_region_hash dm_log dm_mod [last unloaded: sch_ets]
---[ end trace f35878d1912655c2 ]---
RIP: 0010:__list_del_entry_valid.cold.1+0x12/0x47
Code: fe ff 0f 0b 48 89 c1 4c 89 c6 48 c7 c7 08 42 1b 87 e8 1d c5 fe ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 98 42 1b 87 e8 09 c5 fe ff <0f> 0b 48 c7 c7 48 43 1b 87 e8 fb c4 fe ff 0f 0b 48 89 f2 48 89 fe
RSP: 0018:ffffae46807a3888 EFLAGS: 00010246
RAX: 000000000000004e RBX: 0000000000000007 RCX: 0000000000000202
RDX: 0000000000000000 RSI: ffffffff871ac536 RDI: 00000000ffffffff
RBP: ffffae46807a3a10 R08: 0000000000000000 R09: c0000000ffff7fff
R10: 0000000000000001 R11: ffffae46807a36a8 R12: ffff8e028404b800
R13: ffff8e028404bd30 R14: dead000000000100 R15: ffff8e02fafa2400
FS: 00007efdc92e4480(0000) GS:ffff8e02fb600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: fq_pie: prevent dismantle issue
For some reason, fq_pie_destroy() did not copy
working code from pie_destroy() and other qdiscs,
thus causing elusive bug.
Before calling del_timer_sync(&q->adapt_timer),
we need to ensure timer will not rearm itself.
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 0-....: (4416 ticks this GP) idle=60d/1/0x4000000000000000 softirq=10433/10434 fqs=2579
(t=10501 jiffies g=13085 q=3989)
NMI backtrace for cpu 0
CPU: 0 PID: 13 Comm: ksoftirqd/0 Not tainted 5.16.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
nmi_cpu_backtrace.cold+0x47/0x144 lib/nmi_backtrace.c:111
nmi_trigger_cpumask_backtrace+0x1b3/0x230 lib/nmi_backtrace.c:62
trigger_single_cpu_backtrace include/linux/nmi.h:164 [inline]
rcu_dump_cpu_stacks+0x25e/0x3f0 kernel/rcu/tree_stall.h:343
print_cpu_stall kernel/rcu/tree_stall.h:627 [inline]
check_cpu_stall kernel/rcu/tree_stall.h:711 [inline]
rcu_pending kernel/rcu/tree.c:3878 [inline]
rcu_sched_clock_irq.cold+0x9d/0x746 kernel/rcu/tree.c:2597
update_process_times+0x16d/0x200 kernel/time/timer.c:1785
tick_sched_handle+0x9b/0x180 kernel/time/tick-sched.c:226
tick_sched_timer+0x1b0/0x2d0 kernel/time/tick-sched.c:1428
__run_hrtimer kernel/time/hrtimer.c:1685 [inline]
__hrtimer_run_queues+0x1c0/0xe50 kernel/time/hrtimer.c:1749
hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811
local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline]
__sysvec_apic_timer_interrupt+0x146/0x530 arch/x86/kernel/apic/apic.c:1103
sysvec_apic_timer_interrupt+0x8e/0xc0 arch/x86/kernel/apic/apic.c:1097
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638
RIP: 0010:write_comp_data kernel/kcov.c:221 [inline]
RIP: 0010:__sanitizer_cov_trace_const_cmp1+0x1d/0x80 kernel/kcov.c:273
Code: 54 c8 20 48 89 10 c3 66 0f 1f 44 00 00 53 41 89 fb 41 89 f1 bf 03 00 00 00 65 48 8b 0c 25 40 70 02 00 48 89 ce 4c 8b 54 24 08 <e8> 4e f7 ff ff 84 c0 74 51 48 8b 81 88 15 00 00 44 8b 81 84 15 00
RSP: 0018:ffffc90000d27b28 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff888064bf1bf0 RCX: ffff888011928000
RDX: ffff888011928000 RSI: ffff888011928000 RDI: 0000000000000003
RBP: ffff888064bf1c28 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff875d8295 R11: 0000000000000000 R12: 0000000000000000
R13: ffff8880783dd300 R14: 0000000000000000 R15: 0000000000000000
pie_calculate_probability+0x405/0x7c0 net/sched/sch_pie.c:418
fq_pie_timer+0x170/0x2a0 net/sched/sch_fq_pie.c:383
call_timer_fn+0x1a5/0x6b0 kernel/time/timer.c:1421
expire_timers kernel/time/timer.c:1466 [inline]
__run_timers.part.0+0x675/0xa20 kernel/time/timer.c:1734
__run_timers kernel/time/timer.c:1715 [inline]
run_timer_softirq+0xb3/0x1d0 kernel/time/timer.c:1747
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
run_ksoftirqd kernel/softirq.c:921 [inline]
run_ksoftirqd+0x2d/0x60 kernel/softirq.c:913
smpboot_thread_fn+0x645/0x9c0 kernel/smpboot.c:164
kthread+0x405/0x4f0 kernel/kthread.c:327
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
</TASK> |