| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.3. An app may be able to cause unexpected system termination or write kernel memory. |
| A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.3. An app may be able to cause unexpected system termination or write kernel memory. |
| A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.3. An app may be able to cause unexpected system termination or write kernel memory. |
| In the Linux kernel 6.0.8, there is an out-of-bounds read in ntfs_attr_find in fs/ntfs/attrib.c. |
| Out of bounds read in WebRTC in Google Chrome prior to 110.0.5481.77 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: High) |
| A vulnerability has been identified in Node.js version 20, affecting users of the experimental permission model when the --allow-fs-read flag is used with a non-* argument.
This flaw arises from an inadequate permission model that fails to restrict file stats through the `fs.statfs` API. As a result, malicious actors can retrieve stats from files that they do not have explicit read access to.
This vulnerability affects all users using the experimental permission model in Node.js 20.
Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. |
| Sudo 1.8.0 through 1.9.12, with the crypt() password backend, contains a plugins/sudoers/auth/passwd.c array-out-of-bounds error that can result in a heap-based buffer over-read. This can be triggered by arbitrary local users with access to Sudo by entering a password of seven characters or fewer. The impact could vary depending on the system libraries, compiler, and processor architecture. |
| "IBM InfoSphere Information Server 11.7 is potentially vulnerable to CSV Injection. A remote attacker could execute arbitrary commands on the system, caused by improper validation of csv file contents. IBM X-Force ID: 223598." |
| A flaw was found in the src/list.c of tar 1.33 and earlier. This flaw allows an attacker who can submit a crafted input file to tar to cause uncontrolled consumption of memory. The highest threat from this vulnerability is to system availability. |
| In drivers/char/virtio_console.c in the Linux kernel before 5.13.4, data corruption or loss can be triggered by an untrusted device that supplies a buf->len value exceeding the buffer size. NOTE: the vendor indicates that the cited data corruption is not a vulnerability in any existing use case; the length validation was added solely for robustness in the face of anomalous host OS behavior |
| Buffer Overflow vulnerability in LibRaw::stretch() function in libraw\src\postprocessing\aspect_ratio.cpp. |
| An issue was discovered in drivers/net/ethernet/intel/igb/igb_main.c in the IGB driver in the Linux kernel before 6.5.3. A buffer size may not be adequate for frames larger than the MTU. |
|
Heap based buffer overflow in HTTP Server functionality in Micrium uC-HTTP 3.01.01 allows remote code execution via HTTP request.
|
| Buffer Overflow vulnerability in FreeImage_Load function in FreeImage Library 3.19.0(r1828) allows attackers to cuase a denial of service via crafted PFM file. |
| Buffer Overflow vulnerability in function LoadPixelDataRLE8 in PluginBMP.cpp in FreeImage 3.18.0 allows remote attackers to run arbitrary code and cause other impacts via crafted image file. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix increasing MSI-X on VF
Increasing MSI-X value on a VF leads to invalid memory operations. This
is caused by not reallocating some arrays.
Reproducer:
modprobe ice
echo 0 > /sys/bus/pci/devices/$PF_PCI/sriov_drivers_autoprobe
echo 1 > /sys/bus/pci/devices/$PF_PCI/sriov_numvfs
echo 17 > /sys/bus/pci/devices/$VF0_PCI/sriov_vf_msix_count
Default MSI-X is 16, so 17 and above triggers this issue.
KASAN reports:
BUG: KASAN: slab-out-of-bounds in ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
Read of size 8 at addr ffff8888b937d180 by task bash/28433
(...)
Call Trace:
(...)
? ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
kasan_report+0xed/0x120
? ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
ice_vsi_cfg_def+0x3360/0x4770 [ice]
? mutex_unlock+0x83/0xd0
? __pfx_ice_vsi_cfg_def+0x10/0x10 [ice]
? __pfx_ice_remove_vsi_lkup_fltr+0x10/0x10 [ice]
ice_vsi_cfg+0x7f/0x3b0 [ice]
ice_vf_reconfig_vsi+0x114/0x210 [ice]
ice_sriov_set_msix_vec_count+0x3d0/0x960 [ice]
sriov_vf_msix_count_store+0x21c/0x300
(...)
Allocated by task 28201:
(...)
ice_vsi_cfg_def+0x1c8e/0x4770 [ice]
ice_vsi_cfg+0x7f/0x3b0 [ice]
ice_vsi_setup+0x179/0xa30 [ice]
ice_sriov_configure+0xcaa/0x1520 [ice]
sriov_numvfs_store+0x212/0x390
(...)
To fix it, use ice_vsi_rebuild() instead of ice_vf_reconfig_vsi(). This
causes the required arrays to be reallocated taking the new queue count
into account (ice_vsi_realloc_stat_arrays()). Set req_txq and req_rxq
before ice_vsi_rebuild(), so that realloc uses the newly set queue
count.
Additionally, ice_vsi_rebuild() does not remove VSI filters
(ice_fltr_remove_all()), so ice_vf_init_host_cfg() is no longer
necessary. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: vmalloc: ensure vmap_block is initialised before adding to queue
Commit 8c61291fd850 ("mm: fix incorrect vbq reference in
purge_fragmented_block") extended the 'vmap_block' structure to contain a
'cpu' field which is set at allocation time to the id of the initialising
CPU.
When a new 'vmap_block' is being instantiated by new_vmap_block(), the
partially initialised structure is added to the local 'vmap_block_queue'
xarray before the 'cpu' field has been initialised. If another CPU is
concurrently walking the xarray (e.g. via vm_unmap_aliases()), then it
may perform an out-of-bounds access to the remote queue thanks to an
uninitialised index.
This has been observed as UBSAN errors in Android:
| Internal error: UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
|
| Call trace:
| purge_fragmented_block+0x204/0x21c
| _vm_unmap_aliases+0x170/0x378
| vm_unmap_aliases+0x1c/0x28
| change_memory_common+0x1dc/0x26c
| set_memory_ro+0x18/0x24
| module_enable_ro+0x98/0x238
| do_init_module+0x1b0/0x310
Move the initialisation of 'vb->cpu' in new_vmap_block() ahead of the
addition to the xarray. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Add a timeout to acquire the command queue semaphore
Prevent forced completion handling on an entry that has not yet been
assigned an index, causing an out of bounds access on idx = -22.
Instead of waiting indefinitely for the sem, blocking flow now waits for
index to be allocated or a sem acquisition timeout before beginning the
timer for FW completion.
Kernel log example:
mlx5_core 0000:06:00.0: wait_func_handle_exec_timeout:1128:(pid 185911): cmd[-22]: CREATE_UCTX(0xa04) No done completion |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Protect against int overflow for stack access size
This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.
This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix stackmap overflow check on 32-bit arches
The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.
The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem. |