| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| External control of file name or path in Windows NTLM allows an unauthorized attacker to perform spoofing over a network. |
| The vulnerability exists in BLUVOYIX due to an improper password storage implementation and subsequent exposure via unauthenticated APIs. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable users API to retrieve the plaintext passwords of all user users. Successful exploitation of this vulnerability could allow the attacker to gain full access to customers' data and completely compromise the targeted platform by logging in using an exposed admin email address and password. |
| The Electric Studio Download Counter plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin settings in all versions up to, and including, 2.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Flat Shipping Rate by City for WooCommerce plugin for WordPress is vulnerable to time-based SQL Injection via the 'cities' parameter in all versions up to, and including, 1.0.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Shop Manager-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| The List Site Contributors plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the 'alpha' parameter in versions up to, and including, 1.1.8 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. |
| External Control of File Name or Path (CWE-73) combined with Server-Side Request Forgery (CWE-918) can allow an attacker to cause arbitrary file disclosure through a specially crafted credentials JSON payload in the Google Gemini connector configuration. This requires an attacker to have authenticated access with privileges sufficient to create or modify connectors (Alerts & Connectors: All). The server processes a configuration without proper validation, allowing for arbitrary network requests and for arbitrary file reads. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tilcdc: Fix removal actions in case of failed probe
The drm_kms_helper_poll_fini() and drm_atomic_helper_shutdown() helpers
should only be called when the device has been successfully registered.
Currently, these functions are called unconditionally in tilcdc_fini(),
which causes warnings during probe deferral scenarios.
[ 7.972317] WARNING: CPU: 0 PID: 23 at drivers/gpu/drm/drm_atomic_state_helper.c:175 drm_atomic_helper_crtc_duplicate_state+0x60/0x68
...
[ 8.005820] drm_atomic_helper_crtc_duplicate_state from drm_atomic_get_crtc_state+0x68/0x108
[ 8.005858] drm_atomic_get_crtc_state from drm_atomic_helper_disable_all+0x90/0x1c8
[ 8.005885] drm_atomic_helper_disable_all from drm_atomic_helper_shutdown+0x90/0x144
[ 8.005911] drm_atomic_helper_shutdown from tilcdc_fini+0x68/0xf8 [tilcdc]
[ 8.005957] tilcdc_fini [tilcdc] from tilcdc_pdev_probe+0xb0/0x6d4 [tilcdc]
Fix this by rewriting the failed probe cleanup path using the standard
goto error handling pattern, which ensures that cleanup functions are
only called on successfully initialized resources. Additionally, remove
the now-unnecessary is_registered flag. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: avoid invalid read in irdma_net_event
irdma_net_event() should not dereference anything from "neigh" (alias
"ptr") until it has checked that the event is NETEVENT_NEIGH_UPDATE.
Other events come with different structures pointed to by "ptr" and they
may be smaller than struct neighbour.
Move the read of neigh->dev under the NETEVENT_NEIGH_UPDATE case.
The bug is mostly harmless, but it triggers KASAN on debug kernels:
BUG: KASAN: stack-out-of-bounds in irdma_net_event+0x32e/0x3b0 [irdma]
Read of size 8 at addr ffffc900075e07f0 by task kworker/27:2/542554
CPU: 27 PID: 542554 Comm: kworker/27:2 Kdump: loaded Not tainted 5.14.0-630.el9.x86_64+debug #1
Hardware name: [...]
Workqueue: events rt6_probe_deferred
Call Trace:
<IRQ>
dump_stack_lvl+0x60/0xb0
print_address_description.constprop.0+0x2c/0x3f0
print_report+0xb4/0x270
kasan_report+0x92/0xc0
irdma_net_event+0x32e/0x3b0 [irdma]
notifier_call_chain+0x9e/0x180
atomic_notifier_call_chain+0x5c/0x110
rt6_do_redirect+0xb91/0x1080
tcp_v6_err+0xe9b/0x13e0
icmpv6_notify+0x2b2/0x630
ndisc_redirect_rcv+0x328/0x530
icmpv6_rcv+0xc16/0x1360
ip6_protocol_deliver_rcu+0xb84/0x12e0
ip6_input_finish+0x117/0x240
ip6_input+0xc4/0x370
ipv6_rcv+0x420/0x7d0
__netif_receive_skb_one_core+0x118/0x1b0
process_backlog+0xd1/0x5d0
__napi_poll.constprop.0+0xa3/0x440
net_rx_action+0x78a/0xba0
handle_softirqs+0x2d4/0x9c0
do_softirq+0xad/0xe0
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer
Initialize the eb.vma array with values of 0 when the eb structure is
first set up. In particular, this sets the eb->vma[i].vma pointers to
NULL, simplifying cleanup and getting rid of the bug described below.
During the execution of eb_lookup_vmas(), the eb->vma array is
successively filled up with struct eb_vma objects. This process includes
calling eb_add_vma(), which might fail; however, even in the event of
failure, eb->vma[i].vma is set for the currently processed buffer.
If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which
prompts a call to eb_release_vmas() to clean up the mess. Since
eb_lookup_vmas() might fail during processing any (possibly not first)
buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know
at what point did the lookup function fail.
In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper
function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is
set to NULL in case i915_gem_object_userptr_submit_init() fails; the
current one needs to be cleaned up by eb_release_vmas() at this point,
so the next one is set. If eb_add_vma() fails, neither the current nor
the next vma is set to NULL, which is a source of a NULL deref bug
described in the issue linked in the Closes tag.
When entering eb_lookup_vmas(), the vma pointers are set to the slab
poison value, instead of NULL. This doesn't matter for the actual
lookup, since it gets overwritten anyway, however the eb_release_vmas()
function only recognizes NULL as the stopping value, hence the pointers
are being set to NULL as they go in case of intermediate failure. This
patch changes the approach to filling them all with NULL at the start
instead, rather than handling that manually during failure.
(cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd) |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: Initialize options_len before referencing options.
The struct ip_tunnel_info has a flexible array member named
options that is protected by a counted_by(options_len)
attribute.
The compiler will use this information to enforce runtime bounds
checking deployed by FORTIFY_SOURCE string helpers.
As laid out in the GCC documentation, the counter must be
initialized before the first reference to the flexible array
member.
After scanning through the files that use struct ip_tunnel_info
and also refer to options or options_len, it appears the normal
case is to use the ip_tunnel_info_opts_set() helper.
Said helper would initialize options_len properly before copying
data into options, however in the GRE ERSPAN code a partial
update is done, preventing the use of the helper function.
Before this change the handling of ERSPAN traffic in GRE tunnels
would cause a kernel panic when the kernel is compiled with
GCC 15+ and having FORTIFY_SOURCE configured:
memcpy: detected buffer overflow: 4 byte write of buffer size 0
Call Trace:
<IRQ>
__fortify_panic+0xd/0xf
erspan_rcv.cold+0x68/0x83
? ip_route_input_slow+0x816/0x9d0
gre_rcv+0x1b2/0x1c0
gre_rcv+0x8e/0x100
? raw_v4_input+0x2a0/0x2b0
ip_protocol_deliver_rcu+0x1ea/0x210
ip_local_deliver_finish+0x86/0x110
ip_local_deliver+0x65/0x110
? ip_rcv_finish_core+0xd6/0x360
ip_rcv+0x186/0x1a0
Reported-at: https://launchpad.net/bugs/2129580 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Do not register unsupported perf events
Synthetic events currently do not have a function to register perf events.
This leads to calling the tracepoint register functions with a NULL
function pointer which triggers:
------------[ cut here ]------------
WARNING: kernel/tracepoint.c:175 at tracepoint_add_func+0x357/0x370, CPU#2: perf/2272
Modules linked in: kvm_intel kvm irqbypass
CPU: 2 UID: 0 PID: 2272 Comm: perf Not tainted 6.18.0-ftest-11964-ge022764176fc-dirty #323 PREEMPTLAZY
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:tracepoint_add_func+0x357/0x370
Code: 28 9c e8 4c 0b f5 ff eb 0f 4c 89 f7 48 c7 c6 80 4d 28 9c e8 ab 89 f4 ff 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc cc <0f> 0b 49 c7 c6 ea ff ff ff e9 ee fe ff ff 0f 0b e9 f9 fe ff ff 0f
RSP: 0018:ffffabc0c44d3c40 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff9380aa9e4060 RCX: 0000000000000000
RDX: 000000000000000a RSI: ffffffff9e1d4a98 RDI: ffff937fcf5fd6c8
RBP: 0000000000000001 R08: 0000000000000007 R09: ffff937fcf5fc780
R10: 0000000000000003 R11: ffffffff9c193910 R12: 000000000000000a
R13: ffffffff9e1e5888 R14: 0000000000000000 R15: ffffabc0c44d3c78
FS: 00007f6202f5f340(0000) GS:ffff93819f00f000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055d3162281a8 CR3: 0000000106a56003 CR4: 0000000000172ef0
Call Trace:
<TASK>
tracepoint_probe_register+0x5d/0x90
synth_event_reg+0x3c/0x60
perf_trace_event_init+0x204/0x340
perf_trace_init+0x85/0xd0
perf_tp_event_init+0x2e/0x50
perf_try_init_event+0x6f/0x230
? perf_event_alloc+0x4bb/0xdc0
perf_event_alloc+0x65a/0xdc0
__se_sys_perf_event_open+0x290/0x9f0
do_syscall_64+0x93/0x7b0
? entry_SYSCALL_64_after_hwframe+0x76/0x7e
? trace_hardirqs_off+0x53/0xc0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Instead, have the code return -ENODEV, which doesn't warn and has perf
error out with:
# perf record -e synthetic:futex_wait
Error:
The sys_perf_event_open() syscall returned with 19 (No such device) for event (synthetic:futex_wait).
"dmesg | grep -i perf" may provide additional information.
Ideally perf should support synthetic events, but for now just fix the
warning. The support can come later. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Remove queue freezing from several sysfs store callbacks
Freezing the request queue from inside sysfs store callbacks may cause a
deadlock in combination with the dm-multipath driver and the
queue_if_no_path option. Additionally, freezing the request queue slows
down system boot on systems where sysfs attributes are set synchronously.
Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue()
calls from the store callbacks that do not strictly need these callbacks.
Add the __data_racy annotation to request_queue.rq_timeout to suppress
KCSAN data race reports about the rq_timeout reads.
This patch may cause a small delay in applying the new settings.
For all the attributes affected by this patch, I/O will complete
correctly whether the old or the new value of the attribute is used.
This patch affects the following sysfs attributes:
* io_poll_delay
* io_timeout
* nomerges
* read_ahead_kb
* rq_affinity
Here is an example of a deadlock triggered by running test srp/002
if this patch is not applied:
task:multipathd
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
schedule_preempt_disabled+0x1c/0x30
__mutex_lock+0xb89/0x1650
mutex_lock_nested+0x1f/0x30
dm_table_set_restrictions+0x823/0xdf0
__bind+0x166/0x590
dm_swap_table+0x2a7/0x490
do_resume+0x1b1/0x610
dev_suspend+0x55/0x1a0
ctl_ioctl+0x3a5/0x7e0
dm_ctl_ioctl+0x12/0x20
__x64_sys_ioctl+0x127/0x1a0
x64_sys_call+0xe2b/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
task:(udev-worker)
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
blk_mq_freeze_queue_wait+0xf2/0x140
blk_mq_freeze_queue_nomemsave+0x23/0x30
queue_ra_store+0x14e/0x290
queue_attr_store+0x23e/0x2c0
sysfs_kf_write+0xde/0x140
kernfs_fop_write_iter+0x3b2/0x630
vfs_write+0x4fd/0x1390
ksys_write+0xfd/0x230
__x64_sys_write+0x76/0xc0
x64_sys_call+0x276/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: use global inline_xattr_slab instead of per-sb slab cache
As Hong Yun reported in mailing list:
loop7: detected capacity change from 0 to 131072
------------[ cut here ]------------
kmem_cache of name 'f2fs_xattr_entry-7:7' already exists
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline]
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline]
RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
Call Trace:
__kmem_cache_create include/linux/slab.h:353 [inline]
f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]
f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843
f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918
get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692
vfs_get_tree+0x43/0x140 fs/super.c:1815
do_new_mount+0x201/0x550 fs/namespace.c:3808
do_mount fs/namespace.c:4136 [inline]
__do_sys_mount fs/namespace.c:4347 [inline]
__se_sys_mount+0x298/0x2f0 fs/namespace.c:4324
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug can be reproduced w/ below scripts:
- mount /dev/vdb /mnt1
- mount /dev/vdc /mnt2
- umount /mnt1
- mounnt /dev/vdb /mnt1
The reason is if we created two slab caches, named f2fs_xattr_entry-7:3
and f2fs_xattr_entry-7:7, and they have the same slab size. Actually,
slab system will only create one slab cache core structure which has
slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same
structure and cache address.
So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will
decrease reference count of slab cache, rather than release slab cache
entirely, since there is one more user has referenced the cache.
Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again,
slab system will find that there is existed cache which has the same name
and trigger the warning.
Let's changes to use global inline_xattr_slab instead of per-sb slab cache
for fixing. |
| Multi-thread race condition vulnerability in the camera framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| A local user can trigger Harmony SASE Windows client to write or delete files outside the intended certificate working directory. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: avoid deadlock on fallback while reinjecting
Jakub reported an MPTCP deadlock at fallback time:
WARNING: possible recursive locking detected
6.18.0-rc7-virtme #1 Not tainted
--------------------------------------------
mptcp_connect/20858 is trying to acquire lock:
ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_try_fallback+0xd8/0x280
but task is already holding lock:
ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&msk->fallback_lock);
lock(&msk->fallback_lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by mptcp_connect/20858:
#0: ff1100001da18290 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x114/0x1bc0
#1: ff1100001db40fd0 (k-sk_lock-AF_INET#2){+.+.}-{0:0}, at: __mptcp_retrans+0x2cb/0xaa0
#2: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0
stack backtrace:
CPU: 0 UID: 0 PID: 20858 Comm: mptcp_connect Not tainted 6.18.0-rc7-virtme #1 PREEMPT(full)
Hardware name: Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xa0
print_deadlock_bug.cold+0xc0/0xcd
validate_chain+0x2ff/0x5f0
__lock_acquire+0x34c/0x740
lock_acquire.part.0+0xbc/0x260
_raw_spin_lock_bh+0x38/0x50
__mptcp_try_fallback+0xd8/0x280
mptcp_sendmsg_frag+0x16c2/0x3050
__mptcp_retrans+0x421/0xaa0
mptcp_release_cb+0x5aa/0xa70
release_sock+0xab/0x1d0
mptcp_sendmsg+0xd5b/0x1bc0
sock_write_iter+0x281/0x4d0
new_sync_write+0x3c5/0x6f0
vfs_write+0x65e/0xbb0
ksys_write+0x17e/0x200
do_syscall_64+0xbb/0xfd0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fa5627cbc5e
Code: 4d 89 d8 e8 14 bd 00 00 4c 8b 5d f8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 11 c9 c3 0f 1f 80 00 00 00 00 48 8b 45 10 0f 05 <c9> c3 83 e2 39 83 fa 08 75 e7 e8 13 ff ff ff 0f 1f 00 f3 0f 1e fa
RSP: 002b:00007fff1fe14700 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fa5627cbc5e
RDX: 0000000000001f9c RSI: 00007fff1fe16984 RDI: 0000000000000005
RBP: 00007fff1fe14710 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000202 R12: 00007fff1fe16920
R13: 0000000000002000 R14: 0000000000001f9c R15: 0000000000001f9c
The packet scheduler could attempt a reinjection after receiving an
MP_FAIL and before the infinite map has been transmitted, causing a
deadlock since MPTCP needs to do the reinjection atomically from WRT
fallback.
Address the issue explicitly avoiding the reinjection in the critical
scenario. Note that this is the only fallback critical section that
could potentially send packets and hit the double-lock. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: change all pageblocks migrate type on coalescing
When a page is freed it coalesces with a buddy into a higher order page
while possible. When the buddy page migrate type differs, it is expected
to be updated to match the one of the page being freed.
However, only the first pageblock of the buddy page is updated, while the
rest of the pageblocks are left unchanged.
That causes warnings in later expand() and other code paths (like below),
since an inconsistency between migration type of the list containing the
page and the page-owned pageblocks migration types is introduced.
[ 308.986589] ------------[ cut here ]------------
[ 308.987227] page type is 0, passed migratetype is 1 (nr=256)
[ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270
[ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E)
[ 308.987439] Unloaded tainted modules: hmac_s390(E):2
[ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT
[ 308.987657] Tainted: [E]=UNSIGNED_MODULE
[ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0)
[ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270)
[ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88
[ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300
[ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008
[ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0
[ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4
00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60
#00000349976fa5fc: af000000 mc 0,0
>00000349976fa600: a7f4ff4c brc 15,00000349976fa498
00000349976fa604: b9040026 lgr %r2,%r6
00000349976fa608: c0300088317f larl %r3,0000034998800906
00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0
00000349976fa614: af000000 mc 0,0
[ 308.987734] Call Trace:
[ 308.987738] [<00000349976fa600>] expand+0x240/0x270
[ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270)
[ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940
[ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0
[ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40
[ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0
[ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400
[ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220
[ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0
[ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0
[ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240
[ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210
[ 308.987804] [<00000349976cb0
---truncated--- |