Search Results (16740 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-53196 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Don't retire aborted MMIO instruction Returning an abort to the guest for an unsupported MMIO access is a documented feature of the KVM UAPI. Nevertheless, it's clear that this plumbing has seen limited testing, since userspace can trivially cause a WARN in the MMIO return: WARNING: CPU: 0 PID: 30558 at arch/arm64/include/asm/kvm_emulate.h:536 kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536 Call trace: kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536 kvm_arch_vcpu_ioctl_run+0x98/0x15b4 arch/arm64/kvm/arm.c:1133 kvm_vcpu_ioctl+0x75c/0xa78 virt/kvm/kvm_main.c:4487 __do_sys_ioctl fs/ioctl.c:51 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __arm64_sys_ioctl+0x14c/0x1c8 fs/ioctl.c:893 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x1e0/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x38/0x68 arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x90/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 The splat is complaining that KVM is advancing PC while an exception is pending, i.e. that KVM is retiring the MMIO instruction despite a pending synchronous external abort. Womp womp. Fix the glaring UAPI bug by skipping over all the MMIO emulation in case there is a pending synchronous exception. Note that while userspace is capable of pending an asynchronous exception (SError, IRQ, or FIQ), it is still safe to retire the MMIO instruction in this case as (1) they are by definition asynchronous, and (2) KVM relies on hardware support for pending/delivering these exceptions instead of the software state machine for advancing PC.
CVE-2024-53194 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix use-after-free of slot->bus on hot remove Dennis reports a boot crash on recent Lenovo laptops with a USB4 dock. Since commit 0fc70886569c ("thunderbolt: Reset USB4 v2 host router") and commit 59a54c5f3dbd ("thunderbolt: Reset topology created by the boot firmware"), USB4 v2 and v1 Host Routers are reset on probe of the thunderbolt driver. The reset clears the Presence Detect State and Data Link Layer Link Active bits at the USB4 Host Router's Root Port and thus causes hot removal of the dock. The crash occurs when pciehp is unbound from one of the dock's Downstream Ports: pciehp creates a pci_slot on bind and destroys it on unbind. The pci_slot contains a pointer to the pci_bus below the Downstream Port, but a reference on that pci_bus is never acquired. The pci_bus is destroyed before the pci_slot, so a use-after-free ensues when pci_slot_release() accesses slot->bus. In principle this should not happen because pci_stop_bus_device() unbinds pciehp (and therefore destroys the pci_slot) before the pci_bus is destroyed by pci_remove_bus_device(). However the stacktrace provided by Dennis shows that pciehp is unbound from pci_remove_bus_device() instead of pci_stop_bus_device(). To understand the significance of this, one needs to know that the PCI core uses a two step process to remove a portion of the hierarchy: It first unbinds all drivers in the sub-hierarchy in pci_stop_bus_device() and then actually removes the devices in pci_remove_bus_device(). There is no precaution to prevent driver binding in-between pci_stop_bus_device() and pci_remove_bus_device(). In Dennis' case, it seems removal of the hierarchy by pciehp races with driver binding by pci_bus_add_devices(). pciehp is bound to the Downstream Port after pci_stop_bus_device() has run, so it is unbound by pci_remove_bus_device() instead of pci_stop_bus_device(). Because the pci_bus has already been destroyed at that point, accesses to it result in a use-after-free. One might conclude that driver binding needs to be prevented after pci_stop_bus_device() has run. However it seems risky that pci_slot points to pci_bus without holding a reference. Solely relying on correct ordering of driver unbind versus pci_bus destruction is certainly not defensive programming. If pci_slot has a need to access data in pci_bus, it ought to acquire a reference. Amend pci_create_slot() accordingly. Dennis reports that the crash is not reproducible with this change. Abridged stacktrace: pcieport 0000:00:07.0: PME: Signaling with IRQ 156 pcieport 0000:00:07.0: pciehp: Slot #12 AttnBtn- PwrCtrl- MRL- AttnInd- PwrInd- HotPlug+ Surprise+ Interlock- NoCompl+ IbPresDis- LLActRep+ pci_bus 0000:20: dev 00, created physical slot 12 pcieport 0000:00:07.0: pciehp: Slot(12): Card not present ... pcieport 0000:21:02.0: pciehp: pcie_disable_notification: SLOTCTRL d8 write cmd 0 Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI CPU: 13 UID: 0 PID: 134 Comm: irq/156-pciehp Not tainted 6.11.0-devel+ #1 RIP: 0010:dev_driver_string+0x12/0x40 pci_destroy_slot pciehp_remove pcie_port_remove_service device_release_driver_internal bus_remove_device device_del device_unregister remove_iter device_for_each_child pcie_portdrv_remove pci_device_remove device_release_driver_internal bus_remove_device device_del pci_remove_bus_device (recursive invocation) pci_remove_bus_device pciehp_unconfigure_device pciehp_disable_slot pciehp_handle_presence_or_link_change pciehp_ist
CVE-2024-53190 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: Drastically reduce the attempts to read efuse in case of failures Syzkaller reported a hung task with uevent_show() on stack trace. That specific issue was addressed by another commit [0], but even with that fix applied (for example, running v6.12-rc5) we face another type of hung task that comes from the same reproducer [1]. By investigating that, we could narrow it to the following path: (a) Syzkaller emulates a Realtek USB WiFi adapter using raw-gadget and dummy_hcd infrastructure. (b) During the probe of rtl8192cu, the driver ends-up performing an efuse read procedure (which is related to EEPROM load IIUC), and here lies the issue: the function read_efuse() calls read_efuse_byte() many times, as loop iterations depending on the efuse size (in our example, 512 in total). This procedure for reading efuse bytes relies in a loop that performs an I/O read up to *10k* times in case of failures. We measured the time of the loop inside read_efuse_byte() alone, and in this reproducer (which involves the dummy_hcd emulation layer), it takes 15 seconds each. As a consequence, we have the driver stuck in its probe routine for big time, exposing a stack trace like below if we attempt to reboot the system, for example: task:kworker/0:3 state:D stack:0 pid:662 tgid:662 ppid:2 flags:0x00004000 Workqueue: usb_hub_wq hub_event Call Trace: __schedule+0xe22/0xeb6 schedule_timeout+0xe7/0x132 __wait_for_common+0xb5/0x12e usb_start_wait_urb+0xc5/0x1ef ? usb_alloc_urb+0x95/0xa4 usb_control_msg+0xff/0x184 _usbctrl_vendorreq_sync+0xa0/0x161 _usb_read_sync+0xb3/0xc5 read_efuse_byte+0x13c/0x146 read_efuse+0x351/0x5f0 efuse_read_all_map+0x42/0x52 rtl_efuse_shadow_map_update+0x60/0xef rtl_get_hwinfo+0x5d/0x1c2 rtl92cu_read_eeprom_info+0x10a/0x8d5 ? rtl92c_read_chip_version+0x14f/0x17e rtl_usb_probe+0x323/0x851 usb_probe_interface+0x278/0x34b really_probe+0x202/0x4a4 __driver_probe_device+0x166/0x1b2 driver_probe_device+0x2f/0xd8 [...] We propose hereby to drastically reduce the attempts of doing the I/O reads in case of failures, restricted to USB devices (given that they're inherently slower than PCIe ones). By retrying up to 10 times (instead of 10000), we got reponsiveness in the reproducer, while seems reasonable to believe that there's no sane USB device implementation in the field requiring this amount of retries at every I/O read in order to properly work. Based on that assumption, it'd be good to have it backported to stable but maybe not since driver implementation (the 10k number comes from day 0), perhaps up to 6.x series makes sense. [0] Commit 15fffc6a5624 ("driver core: Fix uevent_show() vs driver detach race") [1] A note about that: this syzkaller report presents multiple reproducers that differs by the type of emulated USB device. For this specific case, check the entry from 2024/08/08 06:23 in the list of crashes; the C repro is available at https://syzkaller.appspot.com/text?tag=ReproC&x=1521fc83980000.
CVE-2024-53175 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipc: fix memleak if msg_init_ns failed in create_ipc_ns Percpu memory allocation may failed during create_ipc_ns however this fail is not handled properly since ipc sysctls and mq sysctls is not released properly. Fix this by release these two resource when failure. Here is the kmemleak stack when percpu failed: unreferenced object 0xffff88819de2a600 (size 512): comm "shmem_2nstest", pid 120711, jiffies 4300542254 hex dump (first 32 bytes): 60 aa 9d 84 ff ff ff ff fc 18 48 b2 84 88 ff ff `.........H..... 04 00 00 00 a4 01 00 00 20 e4 56 81 ff ff ff ff ........ .V..... backtrace (crc be7cba35): [<ffffffff81b43f83>] __kmalloc_node_track_caller_noprof+0x333/0x420 [<ffffffff81a52e56>] kmemdup_noprof+0x26/0x50 [<ffffffff821b2f37>] setup_mq_sysctls+0x57/0x1d0 [<ffffffff821b29cc>] copy_ipcs+0x29c/0x3b0 [<ffffffff815d6a10>] create_new_namespaces+0x1d0/0x920 [<ffffffff815d7449>] copy_namespaces+0x2e9/0x3e0 [<ffffffff815458f3>] copy_process+0x29f3/0x7ff0 [<ffffffff8154b080>] kernel_clone+0xc0/0x650 [<ffffffff8154b6b1>] __do_sys_clone+0xa1/0xe0 [<ffffffff843df8ff>] do_syscall_64+0xbf/0x1c0 [<ffffffff846000b0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2024-53173 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: NFSv4.0: Fix a use-after-free problem in the asynchronous open() Yang Erkun reports that when two threads are opening files at the same time, and are forced to abort before a reply is seen, then the call to nfs_release_seqid() in nfs4_opendata_free() can result in a use-after-free of the pointer to the defunct rpc task of the other thread. The fix is to ensure that if the RPC call is aborted before the call to nfs_wait_on_sequence() is complete, then we must call nfs_release_seqid() in nfs4_open_release() before the rpc_task is freed.
CVE-2024-53172 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubi: fastmap: Fix duplicate slab cache names while attaching Since commit 4c39529663b9 ("slab: Warn on duplicate cache names when DEBUG_VM=y"), the duplicate slab cache names can be detected and a kernel WARNING is thrown out. In UBI fast attaching process, alloc_ai() could be invoked twice with the same slab cache name 'ubi_aeb_slab_cache', which will trigger following warning messages: kmem_cache of name 'ubi_aeb_slab_cache' already exists WARNING: CPU: 0 PID: 7519 at mm/slab_common.c:107 __kmem_cache_create_args+0x100/0x5f0 Modules linked in: ubi(+) nandsim [last unloaded: nandsim] CPU: 0 UID: 0 PID: 7519 Comm: modprobe Tainted: G 6.12.0-rc2 RIP: 0010:__kmem_cache_create_args+0x100/0x5f0 Call Trace: __kmem_cache_create_args+0x100/0x5f0 alloc_ai+0x295/0x3f0 [ubi] ubi_attach+0x3c3/0xcc0 [ubi] ubi_attach_mtd_dev+0x17cf/0x3fa0 [ubi] ubi_init+0x3fb/0x800 [ubi] do_init_module+0x265/0x7d0 __x64_sys_finit_module+0x7a/0xc0 The problem could be easily reproduced by loading UBI device by fastmap with CONFIG_DEBUG_VM=y. Fix it by using different slab names for alloc_ai() callers.
CVE-2024-53171 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ubifs: authentication: Fix use-after-free in ubifs_tnc_end_commit After an insertion in TNC, the tree might split and cause a node to change its `znode->parent`. A further deletion of other nodes in the tree (which also could free the nodes), the aforementioned node's `znode->cparent` could still point to a freed node. This `znode->cparent` may not be updated when getting nodes to commit in `ubifs_tnc_start_commit()`. This could then trigger a use-after-free when accessing the `znode->cparent` in `write_index()` in `ubifs_tnc_end_commit()`. This can be triggered by running rm -f /etc/test-file.bin dd if=/dev/urandom of=/etc/test-file.bin bs=1M count=60 conv=fsync in a loop, and with `CONFIG_UBIFS_FS_AUTHENTICATION`. KASAN then reports: BUG: KASAN: use-after-free in ubifs_tnc_end_commit+0xa5c/0x1950 Write of size 32 at addr ffffff800a3af86c by task ubifs_bgt0_20/153 Call trace: dump_backtrace+0x0/0x340 show_stack+0x18/0x24 dump_stack_lvl+0x9c/0xbc print_address_description.constprop.0+0x74/0x2b0 kasan_report+0x1d8/0x1f0 kasan_check_range+0xf8/0x1a0 memcpy+0x84/0xf4 ubifs_tnc_end_commit+0xa5c/0x1950 do_commit+0x4e0/0x1340 ubifs_bg_thread+0x234/0x2e0 kthread+0x36c/0x410 ret_from_fork+0x10/0x20 Allocated by task 401: kasan_save_stack+0x38/0x70 __kasan_kmalloc+0x8c/0xd0 __kmalloc+0x34c/0x5bc tnc_insert+0x140/0x16a4 ubifs_tnc_add+0x370/0x52c ubifs_jnl_write_data+0x5d8/0x870 do_writepage+0x36c/0x510 ubifs_writepage+0x190/0x4dc __writepage+0x58/0x154 write_cache_pages+0x394/0x830 do_writepages+0x1f0/0x5b0 filemap_fdatawrite_wbc+0x170/0x25c file_write_and_wait_range+0x140/0x190 ubifs_fsync+0xe8/0x290 vfs_fsync_range+0xc0/0x1e4 do_fsync+0x40/0x90 __arm64_sys_fsync+0x34/0x50 invoke_syscall.constprop.0+0xa8/0x260 do_el0_svc+0xc8/0x1f0 el0_svc+0x34/0x70 el0t_64_sync_handler+0x108/0x114 el0t_64_sync+0x1a4/0x1a8 Freed by task 403: kasan_save_stack+0x38/0x70 kasan_set_track+0x28/0x40 kasan_set_free_info+0x28/0x4c __kasan_slab_free+0xd4/0x13c kfree+0xc4/0x3a0 tnc_delete+0x3f4/0xe40 ubifs_tnc_remove_range+0x368/0x73c ubifs_tnc_remove_ino+0x29c/0x2e0 ubifs_jnl_delete_inode+0x150/0x260 ubifs_evict_inode+0x1d4/0x2e4 evict+0x1c8/0x450 iput+0x2a0/0x3c4 do_unlinkat+0x2cc/0x490 __arm64_sys_unlinkat+0x90/0x100 invoke_syscall.constprop.0+0xa8/0x260 do_el0_svc+0xc8/0x1f0 el0_svc+0x34/0x70 el0t_64_sync_handler+0x108/0x114 el0t_64_sync+0x1a4/0x1a8 The offending `memcpy()` in `ubifs_copy_hash()` has a use-after-free when a node becomes root in TNC but still has a `cparent` to an already freed node. More specifically, consider the following TNC: zroot / / zp1 / / zn Inserting a new node `zn_new` with a key smaller then `zn` will trigger a split in `tnc_insert()` if `zp1` is full: zroot / \ / \ zp1 zp2 / \ / \ zn_new zn `zn->parent` has now been moved to `zp2`, *but* `zn->cparent` still points to `zp1`. Now, consider a removal of all the nodes _except_ `zn`. Just when `tnc_delete()` is about to delete `zroot` and `zp2`: zroot \ \ zp2 \ \ zn `zroot` and `zp2` get freed and the tree collapses: zn `zn` now becomes the new `zroot`. `get_znodes_to_commit()` will now only find `zn`, the new `zroot`, and `write_index()` will check its `znode->cparent` that wrongly points to the already freed `zp1`. `ubifs_copy_hash()` thus gets wrongly called with `znode->cparent->zbranch[znode->iip].hash` that triggers the use-after-free! Fix this by explicitly setting `znode->cparent` to `NULL` in `get_znodes_to_commit()` for the root node. The search for the dirty nodes ---truncated---
CVE-2024-53170 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: block: fix uaf for flush rq while iterating tags blk_mq_clear_flush_rq_mapping() is not called during scsi probe, by checking blk_queue_init_done(). However, QUEUE_FLAG_INIT_DONE is cleared in del_gendisk by commit aec89dc5d421 ("block: keep q_usage_counter in atomic mode after del_gendisk"), hence for disk like scsi, following blk_mq_destroy_queue() will not clear flush rq from tags->rqs[] as well, cause following uaf that is found by our syzkaller for v6.6: ================================================================== BUG: KASAN: slab-use-after-free in blk_mq_find_and_get_req+0x16e/0x1a0 block/blk-mq-tag.c:261 Read of size 4 at addr ffff88811c969c20 by task kworker/1:2H/224909 CPU: 1 PID: 224909 Comm: kworker/1:2H Not tainted 6.6.0-ga836a5060850 #32 Workqueue: kblockd blk_mq_timeout_work Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x91/0xf0 lib/dump_stack.c:106 print_address_description.constprop.0+0x66/0x300 mm/kasan/report.c:364 print_report+0x3e/0x70 mm/kasan/report.c:475 kasan_report+0xb8/0xf0 mm/kasan/report.c:588 blk_mq_find_and_get_req+0x16e/0x1a0 block/blk-mq-tag.c:261 bt_iter block/blk-mq-tag.c:288 [inline] __sbitmap_for_each_set include/linux/sbitmap.h:295 [inline] sbitmap_for_each_set include/linux/sbitmap.h:316 [inline] bt_for_each+0x455/0x790 block/blk-mq-tag.c:325 blk_mq_queue_tag_busy_iter+0x320/0x740 block/blk-mq-tag.c:534 blk_mq_timeout_work+0x1a3/0x7b0 block/blk-mq.c:1673 process_one_work+0x7c4/0x1450 kernel/workqueue.c:2631 process_scheduled_works kernel/workqueue.c:2704 [inline] worker_thread+0x804/0xe40 kernel/workqueue.c:2785 kthread+0x346/0x450 kernel/kthread.c:388 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:293 Allocated by task 942: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 ____kasan_kmalloc mm/kasan/common.c:374 [inline] __kasan_kmalloc mm/kasan/common.c:383 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:380 kasan_kmalloc include/linux/kasan.h:198 [inline] __do_kmalloc_node mm/slab_common.c:1007 [inline] __kmalloc_node+0x69/0x170 mm/slab_common.c:1014 kmalloc_node include/linux/slab.h:620 [inline] kzalloc_node include/linux/slab.h:732 [inline] blk_alloc_flush_queue+0x144/0x2f0 block/blk-flush.c:499 blk_mq_alloc_hctx+0x601/0x940 block/blk-mq.c:3788 blk_mq_alloc_and_init_hctx+0x27f/0x330 block/blk-mq.c:4261 blk_mq_realloc_hw_ctxs+0x488/0x5e0 block/blk-mq.c:4294 blk_mq_init_allocated_queue+0x188/0x860 block/blk-mq.c:4350 blk_mq_init_queue_data block/blk-mq.c:4166 [inline] blk_mq_init_queue+0x8d/0x100 block/blk-mq.c:4176 scsi_alloc_sdev+0x843/0xd50 drivers/scsi/scsi_scan.c:335 scsi_probe_and_add_lun+0x77c/0xde0 drivers/scsi/scsi_scan.c:1189 __scsi_scan_target+0x1fc/0x5a0 drivers/scsi/scsi_scan.c:1727 scsi_scan_channel drivers/scsi/scsi_scan.c:1815 [inline] scsi_scan_channel+0x14b/0x1e0 drivers/scsi/scsi_scan.c:1791 scsi_scan_host_selected+0x2fe/0x400 drivers/scsi/scsi_scan.c:1844 scsi_scan+0x3a0/0x3f0 drivers/scsi/scsi_sysfs.c:151 store_scan+0x2a/0x60 drivers/scsi/scsi_sysfs.c:191 dev_attr_store+0x5c/0x90 drivers/base/core.c:2388 sysfs_kf_write+0x11c/0x170 fs/sysfs/file.c:136 kernfs_fop_write_iter+0x3fc/0x610 fs/kernfs/file.c:338 call_write_iter include/linux/fs.h:2083 [inline] new_sync_write+0x1b4/0x2d0 fs/read_write.c:493 vfs_write+0x76c/0xb00 fs/read_write.c:586 ksys_write+0x127/0x250 fs/read_write.c:639 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x70/0x120 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x78/0xe2 Freed by task 244687: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2b/0x50 mm/kasan/generic.c:522 ____kasan_slab_free mm/kasan/common.c:236 [inline] __kasan_slab_free+0x12a/0x1b0 mm/kasan/common.c:244 kasan_slab_free include/linux/kasan.h:164 [in ---truncated---
CVE-2024-53165 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: sh: intc: Fix use-after-free bug in register_intc_controller() In the error handling for this function, d is freed without ever removing it from intc_list which would lead to a use after free. To fix this, let's only add it to the list after everything has succeeded.
CVE-2024-53161 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: EDAC/bluefield: Fix potential integer overflow The 64-bit argument for the "get DIMM info" SMC call consists of mem_ctrl_idx left-shifted 16 bits and OR-ed with DIMM index. With mem_ctrl_idx defined as 32-bits wide the left-shift operation truncates the upper 16 bits of information during the calculation of the SMC argument. The mem_ctrl_idx stack variable must be defined as 64-bits wide to prevent any potential integer overflow, i.e. loss of data from upper 16 bits.
CVE-2024-53158 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: geni-se: fix array underflow in geni_se_clk_tbl_get() This loop is supposed to break if the frequency returned from clk_round_rate() is the same as on the previous iteration. However, that check doesn't make sense on the first iteration through the loop. It leads to reading before the start of these->clk_perf_tbl[] array.
CVE-2024-53157 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scpi: Check the DVFS OPP count returned by the firmware Fix a kernel crash with the below call trace when the SCPI firmware returns OPP count of zero. dvfs_info.opp_count may be zero on some platforms during the reboot test, and the kernel will crash after dereferencing the pointer to kcalloc(info->count, sizeof(*opp), GFP_KERNEL). | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000028 | Mem abort info: | ESR = 0x96000004 | Exception class = DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | Data abort info: | ISV = 0, ISS = 0x00000004 | CM = 0, WnR = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000faefa08c | [0000000000000028] pgd=0000000000000000 | Internal error: Oops: 96000004 [#1] SMP | scpi-hwmon: probe of PHYT000D:00 failed with error -110 | Process systemd-udevd (pid: 1701, stack limit = 0x00000000aaede86c) | CPU: 2 PID: 1701 Comm: systemd-udevd Not tainted 4.19.90+ #1 | Hardware name: PHYTIUM LTD Phytium FT2000/4/Phytium FT2000/4, BIOS | pstate: 60000005 (nZCv daif -PAN -UAO) | pc : scpi_dvfs_recalc_rate+0x40/0x58 [clk_scpi] | lr : clk_register+0x438/0x720 | Call trace: | scpi_dvfs_recalc_rate+0x40/0x58 [clk_scpi] | devm_clk_hw_register+0x50/0xa0 | scpi_clk_ops_init.isra.2+0xa0/0x138 [clk_scpi] | scpi_clocks_probe+0x528/0x70c [clk_scpi] | platform_drv_probe+0x58/0xa8 | really_probe+0x260/0x3d0 | driver_probe_device+0x12c/0x148 | device_driver_attach+0x74/0x98 | __driver_attach+0xb4/0xe8 | bus_for_each_dev+0x88/0xe0 | driver_attach+0x30/0x40 | bus_add_driver+0x178/0x2b0 | driver_register+0x64/0x118 | __platform_driver_register+0x54/0x60 | scpi_clocks_driver_init+0x24/0x1000 [clk_scpi] | do_one_initcall+0x54/0x220 | do_init_module+0x54/0x1c8 | load_module+0x14a4/0x1668 | __se_sys_finit_module+0xf8/0x110 | __arm64_sys_finit_module+0x24/0x30 | el0_svc_common+0x78/0x170 | el0_svc_handler+0x38/0x78 | el0_svc+0x8/0x340 | Code: 937d7c00 a94153f3 a8c27bfd f9400421 (b8606820) | ---[ end trace 06feb22469d89fa8 ]--- | Kernel panic - not syncing: Fatal exception | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x10,a0002008 | Memory Limit: none
CVE-2024-53156 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: add range check for conn_rsp_epid in htc_connect_service() I found the following bug in my fuzzer: UBSAN: array-index-out-of-bounds in drivers/net/wireless/ath/ath9k/htc_hst.c:26:51 index 255 is out of range for type 'htc_endpoint [22]' CPU: 0 UID: 0 PID: 8 Comm: kworker/0:0 Not tainted 6.11.0-rc6-dirty #14 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: events request_firmware_work_func Call Trace: <TASK> dump_stack_lvl+0x180/0x1b0 __ubsan_handle_out_of_bounds+0xd4/0x130 htc_issue_send.constprop.0+0x20c/0x230 ? _raw_spin_unlock_irqrestore+0x3c/0x70 ath9k_wmi_cmd+0x41d/0x610 ? mark_held_locks+0x9f/0xe0 ... Since this bug has been confirmed to be caused by insufficient verification of conn_rsp_epid, I think it would be appropriate to add a range check for conn_rsp_epid to htc_connect_service() to prevent the bug from occurring.
CVE-2024-53155 1 Linux 1 Linux Kernel 2025-11-03 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix uninitialized value in ocfs2_file_read_iter() Syzbot has reported the following KMSAN splat: BUG: KMSAN: uninit-value in ocfs2_file_read_iter+0x9a4/0xf80 ocfs2_file_read_iter+0x9a4/0xf80 __io_read+0x8d4/0x20f0 io_read+0x3e/0xf0 io_issue_sqe+0x42b/0x22c0 io_wq_submit_work+0xaf9/0xdc0 io_worker_handle_work+0xd13/0x2110 io_wq_worker+0x447/0x1410 ret_from_fork+0x6f/0x90 ret_from_fork_asm+0x1a/0x30 Uninit was created at: __alloc_pages_noprof+0x9a7/0xe00 alloc_pages_mpol_noprof+0x299/0x990 alloc_pages_noprof+0x1bf/0x1e0 allocate_slab+0x33a/0x1250 ___slab_alloc+0x12ef/0x35e0 kmem_cache_alloc_bulk_noprof+0x486/0x1330 __io_alloc_req_refill+0x84/0x560 io_submit_sqes+0x172f/0x2f30 __se_sys_io_uring_enter+0x406/0x41c0 __x64_sys_io_uring_enter+0x11f/0x1a0 x64_sys_call+0x2b54/0x3ba0 do_syscall_64+0xcd/0x1e0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Since an instance of 'struct kiocb' may be passed from the block layer with 'private' field uninitialized, introduce 'ocfs2_iocb_init_rw_locked()' and use it from where 'ocfs2_dio_end_io()' might take care, i.e. in 'ocfs2_file_read_iter()' and 'ocfs2_file_write_iter()'.
CVE-2024-53154 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: clk-apple-nco: Add NULL check in applnco_probe Add NULL check in applnco_probe, to handle kernel NULL pointer dereference error.
CVE-2024-53151 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: svcrdma: Address an integer overflow Dan Carpenter reports: > Commit 78147ca8b4a9 ("svcrdma: Add a "parsed chunk list" data > structure") from Jun 22, 2020 (linux-next), leads to the following > Smatch static checker warning: > > net/sunrpc/xprtrdma/svc_rdma_recvfrom.c:498 xdr_check_write_chunk() > warn: potential user controlled sizeof overflow 'segcount * 4 * 4' > > net/sunrpc/xprtrdma/svc_rdma_recvfrom.c > 488 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt) > 489 { > 490 u32 segcount; > 491 __be32 *p; > 492 > 493 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount)) > ^^^^^^^^ > > 494 return false; > 495 > 496 /* A bogus segcount causes this buffer overflow check to fail. */ > 497 p = xdr_inline_decode(&rctxt->rc_stream, > --> 498 segcount * rpcrdma_segment_maxsz * sizeof(*p)); > > > segcount is an untrusted u32. On 32bit systems anything >= SIZE_MAX / 16 will > have an integer overflow and some those values will be accepted by > xdr_inline_decode().
CVE-2024-53148 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: comedi: Flush partial mappings in error case If some remap_pfn_range() calls succeeded before one failed, we still have buffer pages mapped into the userspace page tables when we drop the buffer reference with comedi_buf_map_put(bm). The userspace mappings are only cleaned up later in the mmap error path. Fix it by explicitly flushing all mappings in our VMA on the error path. See commit 79a61cc3fc04 ("mm: avoid leaving partial pfn mappings around in error case").
CVE-2024-53145 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: um: Fix potential integer overflow during physmem setup This issue happens when the real map size is greater than LONG_MAX, which can be easily triggered on UML/i386.
CVE-2024-53142 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: initramfs: avoid filename buffer overrun The initramfs filename field is defined in Documentation/driver-api/early-userspace/buffer-format.rst as: 37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data ... 55 ============= ================== ========================= 56 Field name Field size Meaning 57 ============= ================== ========================= ... 70 c_namesize 8 bytes Length of filename, including final \0 When extracting an initramfs cpio archive, the kernel's do_name() path handler assumes a zero-terminated path at @collected, passing it directly to filp_open() / init_mkdir() / init_mknod(). If a specially crafted cpio entry carries a non-zero-terminated filename and is followed by uninitialized memory, then a file may be created with trailing characters that represent the uninitialized memory. The ability to create an initramfs entry would imply already having full control of the system, so the buffer overrun shouldn't be considered a security vulnerability. Append the output of the following bash script to an existing initramfs and observe any created /initramfs_test_fname_overrunAA* path. E.g. ./reproducer.sh | gzip >> /myinitramfs It's easiest to observe non-zero uninitialized memory when the output is gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(), rather than the initrd_start+initrd_size block. ---- reproducer.sh ---- nilchar="A" # change to "\0" to properly zero terminate / pad magic="070701" ino=1 mode=$(( 0100777 )) uid=0 gid=0 nlink=1 mtime=1 filesize=0 devmajor=0 devminor=1 rdevmajor=0 rdevminor=0 csum=0 fname="initramfs_test_fname_overrun" namelen=$(( ${#fname} + 1 )) # plus one to account for terminator printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \ $magic $ino $mode $uid $gid $nlink $mtime $filesize \ $devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) )) printf "%.s${nilchar}" $(seq 1 $termpadlen) ---- reproducer.sh ---- Symlink filename fields handled in do_symlink() won't overrun past the data segment, due to the explicit zero-termination of the symlink target. Fix filename buffer overrun by aborting the initramfs FSM if any cpio entry doesn't carry a zero-terminator at the expected (name_len - 1) offset.
CVE-2024-53141 2 Linux, Redhat 8 Linux Kernel, Enterprise Linux, Rhel Aus and 5 more 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: add missing range check in bitmap_ip_uadt When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists, the values of ip and ip_to are slightly swapped. Therefore, the range check for ip should be done later, but this part is missing and it seems that the vulnerability occurs. So we should add missing range checks and remove unnecessary range checks.