| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: dice: fix buffer overflow in detect_stream_formats()
The function detect_stream_formats() reads the stream_count value directly
from a FireWire device without validating it. This can lead to
out-of-bounds writes when a malicious device provides a stream_count value
greater than MAX_STREAMS.
Fix by applying the same validation to both TX and RX stream counts in
detect_stream_formats(). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_hda_read_acpi()
The acpi_get_first_physical_node() function can return NULL, in which
case the get_device() function also returns NULL, but this value is
then dereferenced without checking,so add a check to prevent a crash.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: wavefront: Fix integer overflow in sample size validation
The wavefront_send_sample() function has an integer overflow issue
when validating sample size. The header->size field is u32 but gets
cast to int for comparison with dev->freemem
Fix by using unsigned comparison to avoid integer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: avoid bug_on in jbd2_journal_get_create_access() when file system corrupted
There's issue when file system corrupted:
------------[ cut here ]------------
kernel BUG at fs/jbd2/transaction.c:1289!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 5 UID: 0 PID: 2031 Comm: mkdir Not tainted 6.18.0-rc1-next
RIP: 0010:jbd2_journal_get_create_access+0x3b6/0x4d0
RSP: 0018:ffff888117aafa30 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff88811a86b000 RCX: ffffffff89a63534
RDX: 1ffff110200ec602 RSI: 0000000000000004 RDI: ffff888100763010
RBP: ffff888100763000 R08: 0000000000000001 R09: ffff888100763028
R10: 0000000000000003 R11: 0000000000000000 R12: 0000000000000000
R13: ffff88812c432000 R14: ffff88812c608000 R15: ffff888120bfc000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f91d6970c99 CR3: 00000001159c4000 CR4: 00000000000006f0
Call Trace:
<TASK>
__ext4_journal_get_create_access+0x42/0x170
ext4_getblk+0x319/0x6f0
ext4_bread+0x11/0x100
ext4_append+0x1e6/0x4a0
ext4_init_new_dir+0x145/0x1d0
ext4_mkdir+0x326/0x920
vfs_mkdir+0x45c/0x740
do_mkdirat+0x234/0x2f0
__x64_sys_mkdir+0xd6/0x120
do_syscall_64+0x5f/0xfa0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The above issue occurs with us in errors=continue mode when accompanied by
storage failures. There have been many inconsistencies in the file system
data.
In the case of file system data inconsistency, for example, if the block
bitmap of a referenced block is not set, it can lead to the situation where
a block being committed is allocated and used again. As a result, the
following condition will not be satisfied then trigger BUG_ON. Of course,
it is entirely possible to construct a problematic image that can trigger
this BUG_ON through specific operations. In fact, I have constructed such
an image and easily reproduced this issue.
Therefore, J_ASSERT() holds true only under ideal conditions, but it may
not necessarily be satisfied in exceptional scenarios. Using J_ASSERT()
directly in abnormal situations would cause the system to crash, which is
clearly not what we want. So here we directly trigger a JBD abort instead
of immediately invoking BUG_ON. |
| In the Linux kernel, the following vulnerability has been resolved:
locking/spinlock/debug: Fix data-race in do_raw_write_lock
KCSAN reports:
BUG: KCSAN: data-race in do_raw_write_lock / do_raw_write_lock
write (marked) to 0xffff800009cf504c of 4 bytes by task 1102 on cpu 1:
do_raw_write_lock+0x120/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
read to 0xffff800009cf504c of 4 bytes by task 1103 on cpu 0:
do_raw_write_lock+0x88/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
value changed: 0xffffffff -> 0x00000001
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 1103 Comm: kworker/u4:1 6.1.111
Commit 1a365e822372 ("locking/spinlock/debug: Fix various data races") has
adressed most of these races, but seems to be not consistent/not complete.
>From do_raw_write_lock() only debug_write_lock_after() part has been
converted to WRITE_ONCE(), but not debug_write_lock_before() part.
Do it now. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl818: fix null-ptr-deref in pcl818_ai_cancel()
Syzbot identified an issue [1] in pcl818_ai_cancel(), which stems from
the fact that in case of early device detach via pcl818_detach(),
subdevice dev->read_subdev may not have initialized its pointer to
&struct comedi_async as intended. Thus, any such dereferencing of
&s->async->cmd will lead to general protection fault and kernel crash.
Mitigate this problem by removing a call to pcl818_ai_cancel() from
pcl818_detach() altogether. This way, if the subdevice setups its
support for async commands, everything async-related will be
handled via subdevice's own ->cancel() function in
comedi_device_detach_locked() even before pcl818_detach(). If no
support for asynchronous commands is provided, there is no need
to cancel anything either.
[1] Syzbot crash:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
CPU: 1 UID: 0 PID: 6050 Comm: syz.0.18 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
RIP: 0010:pcl818_ai_cancel+0x69/0x3f0 drivers/comedi/drivers/pcl818.c:762
...
Call Trace:
<TASK>
pcl818_detach+0x66/0xd0 drivers/comedi/drivers/pcl818.c:1115
comedi_device_detach_locked+0x178/0x750 drivers/comedi/drivers.c:207
do_devconfig_ioctl drivers/comedi/comedi_fops.c:848 [inline]
comedi_unlocked_ioctl+0xcde/0x1020 drivers/comedi/comedi_fops.c:2178
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
... |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: c6xdigio: Fix invalid PNP driver unregistration
The Comedi low-level driver "c6xdigio" seems to be for a parallel port
connected device. When the Comedi core calls the driver's Comedi
"attach" handler `c6xdigio_attach()` to configure a Comedi to use this
driver, it tries to enable the parallel port PNP resources by
registering a PNP driver with `pnp_register_driver()`, but ignores the
return value. (The `struct pnp_driver` it uses has only the `name` and
`id_table` members filled in.) The driver's Comedi "detach" handler
`c6xdigio_detach()` unconditionally unregisters the PNP driver with
`pnp_unregister_driver()`.
It is possible for `c6xdigio_attach()` to return an error before it
calls `pnp_register_driver()` and it is possible for the call to
`pnp_register_driver()` to return an error (that is ignored). In both
cases, the driver should not be calling `pnp_unregister_driver()` as it
does in `c6xdigio_detach()`. (Note that `c6xdigio_detach()` will be
called by the Comedi core if `c6xdigio_attach()` returns an error, or if
the Comedi core decides to detach the Comedi device from the driver for
some other reason.)
The unconditional call to `pnp_unregister_driver()` without a previous
successful call to `pnp_register_driver()` will cause
`driver_unregister()` to issue a warning "Unexpected driver
unregister!". This was detected by Syzbot [1].
Also, the PNP driver registration and unregistration should be done at
module init and exit time, respectively, not when attaching or detaching
Comedi devices to the driver. (There might be more than one Comedi
device being attached to the driver, although that is unlikely.)
Change the driver to do the PNP driver registration at module init time,
and the unregistration at module exit time. Since `c6xdigio_detach()`
now only calls `comedi_legacy_detach()`, remove the function and change
the Comedi driver "detach" handler to `comedi_legacy_detach`.
-------------------------------------------
[1] Syzbot sample crash report:
Unexpected driver unregister!
WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister drivers/base/driver.c:273 [inline]
WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister+0x90/0xb0 drivers/base/driver.c:270
Modules linked in:
CPU: 0 UID: 0 PID: 5970 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
RIP: 0010:driver_unregister drivers/base/driver.c:273 [inline]
RIP: 0010:driver_unregister+0x90/0xb0 drivers/base/driver.c:270
Code: 48 89 ef e8 c2 e6 82 fc 48 89 df e8 3a 93 ff ff 5b 5d e9 c3 6d d9 fb e8 be 6d d9 fb 90 48 c7 c7 e0 f8 1f 8c e8 51 a2 97 fb 90 <0f> 0b 90 90 5b 5d e9 a5 6d d9 fb e8 e0 f4 41 fc eb 94 e8 d9 f4 41
RSP: 0018:ffffc9000373f9a0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff8ff24720 RCX: ffffffff817b6ee8
RDX: ffff88807c932480 RSI: ffffffff817b6ef5 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8ff24660
R13: dffffc0000000000 R14: 0000000000000000 R15: ffff88814cca0000
FS: 000055556dab1500(0000) GS:ffff8881249d9000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f77f285cd0 CR3: 000000007d871000 CR4: 00000000003526f0
Call Trace:
<TASK>
comedi_device_detach_locked+0x12f/0xa50 drivers/comedi/drivers.c:207
comedi_device_detach+0x67/0xb0 drivers/comedi/drivers.c:215
comedi_device_attach+0x43d/0x900 drivers/comedi/drivers.c:1011
do_devconfig_ioctl+0x1b1/0x710 drivers/comedi/comedi_fops.c:872
comedi_unlocked_ioctl+0x165d/0x2f00 drivers/comedi/comedi_fops.c:2178
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl fs/ioctl.c:583 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_sys
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_cake: Fix incorrect qlen reduction in cake_drop
In cake_drop(), qdisc_tree_reduce_backlog() is used to update the qlen
and backlog of the qdisc hierarchy. Its caller, cake_enqueue(), assumes
that the parent qdisc will enqueue the current packet. However, this
assumption breaks when cake_enqueue() returns NET_XMIT_CN: the parent
qdisc stops enqueuing current packet, leaving the tree qlen/backlog
accounting inconsistent. This mismatch can lead to a NULL dereference
(e.g., when the parent Qdisc is qfq_qdisc).
This patch computes the qlen/backlog delta in a more robust way by
observing the difference before and after the series of cake_drop()
calls, and then compensates the qdisc tree accounting if cake_enqueue()
returns NET_XMIT_CN.
To ensure correct compensation when ACK thinning is enabled, a new
variable is introduced to keep qlen unchanged. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose().
syzbot reported divide-by-zero in __tcp_select_window() by
MPTCP socket. [0]
We had a similar issue for the bare TCP and fixed in commit
499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead
of 0").
Let's apply the same fix to mptcp_do_fastclose().
[0]:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336
Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00
RSP: 0018:ffffc90003017640 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028
R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0
Call Trace:
<TASK>
tcp_select_window net/ipv4/tcp_output.c:281 [inline]
__tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568
tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline]
tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836
mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793
mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253
mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776
mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0xe5/0x270 net/socket.c:742
__sys_sendto+0x3bd/0x520 net/socket.c:2244
__do_sys_sendto net/socket.c:2251 [inline]
__se_sys_sendto net/socket.c:2247 [inline]
__x64_sys_sendto+0xde/0x100 net/socket.c:2247
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f66e998f749
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
bfs: Reconstruct file type when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted
or when the 32bits "attributes" field loaded from disk are corrupted.
A documentation says that BFS uses only lower 9 bits of the "mode" field.
But I can't find an explicit explanation that the unused upper 23 bits
(especially, the S_IFMT bits) are initialized with 0.
Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk.
Also, verify that the value of the "attributes" field loaded from disk is
either BFS_VREG or BFS_VDIR (because BFS supports only regular files and
the root directory). |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix admin request_queue lifetime
The namespaces can access the controller's admin request_queue, and
stale references on the namespaces may exist after tearing down the
controller. Ensure the admin request_queue is active by moving the
controller's 'put' to after all controller references have been released
to ensure no one is can access the request_queue. This fixes a reported
use-after-free bug:
BUG: KASAN: slab-use-after-free in blk_queue_enter+0x41c/0x4a0
Read of size 8 at addr ffff88c0a53819f8 by task nvme/3287
CPU: 67 UID: 0 PID: 3287 Comm: nvme Tainted: G E 6.13.2-ga1582f1a031e #15
Tainted: [E]=UNSIGNED_MODULE
Hardware name: Jabil /EGS 2S MB1, BIOS 1.00 06/18/2025
Call Trace:
<TASK>
dump_stack_lvl+0x4f/0x60
print_report+0xc4/0x620
? _raw_spin_lock_irqsave+0x70/0xb0
? _raw_read_unlock_irqrestore+0x30/0x30
? blk_queue_enter+0x41c/0x4a0
kasan_report+0xab/0xe0
? blk_queue_enter+0x41c/0x4a0
blk_queue_enter+0x41c/0x4a0
? __irq_work_queue_local+0x75/0x1d0
? blk_queue_start_drain+0x70/0x70
? irq_work_queue+0x18/0x20
? vprintk_emit.part.0+0x1cc/0x350
? wake_up_klogd_work_func+0x60/0x60
blk_mq_alloc_request+0x2b7/0x6b0
? __blk_mq_alloc_requests+0x1060/0x1060
? __switch_to+0x5b7/0x1060
nvme_submit_user_cmd+0xa9/0x330
nvme_user_cmd.isra.0+0x240/0x3f0
? force_sigsegv+0xe0/0xe0
? nvme_user_cmd64+0x400/0x400
? vfs_fileattr_set+0x9b0/0x9b0
? cgroup_update_frozen_flag+0x24/0x1c0
? cgroup_leave_frozen+0x204/0x330
? nvme_ioctl+0x7c/0x2c0
blkdev_ioctl+0x1a8/0x4d0
? blkdev_common_ioctl+0x1930/0x1930
? fdget+0x54/0x380
__x64_sys_ioctl+0x129/0x190
do_syscall_64+0x5b/0x160
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f765f703b0b
Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d dd 52 0f 00 f7 d8 64 89 01 48
RSP: 002b:00007ffe2cefe808 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffe2cefe860 RCX: 00007f765f703b0b
RDX: 00007ffe2cefe860 RSI: 00000000c0484e41 RDI: 0000000000000003
RBP: 0000000000000000 R08: 0000000000000003 R09: 0000000000000000
R10: 00007f765f611d50 R11: 0000000000000202 R12: 0000000000000003
R13: 00000000c0484e41 R14: 0000000000000001 R15: 00007ffe2cefea60
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: refresh inline data size before write operations
The cached ei->i_inline_size can become stale between the initial size
check and when ext4_update_inline_data()/ext4_create_inline_data() use
it. Although ext4_get_max_inline_size() reads the correct value at the
time of the check, concurrent xattr operations can modify i_inline_size
before ext4_write_lock_xattr() is acquired.
This causes ext4_update_inline_data() and ext4_create_inline_data() to
work with stale capacity values, leading to a BUG_ON() crash in
ext4_write_inline_data():
kernel BUG at fs/ext4/inline.c:1331!
BUG_ON(pos + len > EXT4_I(inode)->i_inline_size);
The race window:
1. ext4_get_max_inline_size() reads i_inline_size = 60 (correct)
2. Size check passes for 50-byte write
3. [Another thread adds xattr, i_inline_size changes to 40]
4. ext4_write_lock_xattr() acquires lock
5. ext4_update_inline_data() uses stale i_inline_size = 60
6. Attempts to write 50 bytes but only 40 bytes actually available
7. BUG_ON() triggers
Fix this by recalculating i_inline_size via ext4_find_inline_data_nolock()
immediately after acquiring xattr_sem. This ensures ext4_update_inline_data()
and ext4_create_inline_data() work with current values that are protected
from concurrent modifications.
This is similar to commit a54c4613dac1 ("ext4: fix race writing to an
inline_data file while its xattrs are changing") which fixed i_inline_off
staleness. This patch addresses the related i_inline_size staleness issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: ipc: fix use-after-free in ipc_msg_send_request
ipc_msg_send_request() waits for a generic netlink reply using an
ipc_msg_table_entry on the stack. The generic netlink handler
(handle_generic_event()/handle_response()) fills entry->response under
ipc_msg_table_lock, but ipc_msg_send_request() used to validate and free
entry->response without holding the same lock.
Under high concurrency this allows a race where handle_response() is
copying data into entry->response while ipc_msg_send_request() has just
freed it, leading to a slab-use-after-free reported by KASAN in
handle_generic_event():
BUG: KASAN: slab-use-after-free in handle_generic_event+0x3c4/0x5f0 [ksmbd]
Write of size 12 at addr ffff888198ee6e20 by task pool/109349
...
Freed by task:
kvfree
ipc_msg_send_request [ksmbd]
ksmbd_rpc_open -> ksmbd_session_rpc_open [ksmbd]
Fix by:
- Taking ipc_msg_table_lock in ipc_msg_send_request() while validating
entry->response, freeing it when invalid, and removing the entry from
ipc_msg_table.
- Returning the final entry->response pointer to the caller only after
the hash entry is removed under the lock.
- Returning NULL in the error path, preserving the original API
semantics.
This makes all accesses to entry->response consistent with
handle_response(), which already updates and fills the response buffer
under ipc_msg_table_lock, and closes the race that allowed the UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: add i_data_sem protection in ext4_destroy_inline_data_nolock()
Fix a race between inline data destruction and block mapping.
The function ext4_destroy_inline_data_nolock() changes the inode data
layout by clearing EXT4_INODE_INLINE_DATA and setting EXT4_INODE_EXTENTS.
At the same time, another thread may execute ext4_map_blocks(), which
tests EXT4_INODE_EXTENTS to decide whether to call ext4_ext_map_blocks()
or ext4_ind_map_blocks().
Without i_data_sem protection, ext4_ind_map_blocks() may receive inode
with EXT4_INODE_EXTENTS flag and triggering assert.
kernel BUG at fs/ext4/indirect.c:546!
EXT4-fs (loop2): unmounting filesystem.
invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:ext4_ind_map_blocks.cold+0x2b/0x5a fs/ext4/indirect.c:546
Call Trace:
<TASK>
ext4_map_blocks+0xb9b/0x16f0 fs/ext4/inode.c:681
_ext4_get_block+0x242/0x590 fs/ext4/inode.c:822
ext4_block_write_begin+0x48b/0x12c0 fs/ext4/inode.c:1124
ext4_write_begin+0x598/0xef0 fs/ext4/inode.c:1255
ext4_da_write_begin+0x21e/0x9c0 fs/ext4/inode.c:3000
generic_perform_write+0x259/0x5d0 mm/filemap.c:3846
ext4_buffered_write_iter+0x15b/0x470 fs/ext4/file.c:285
ext4_file_write_iter+0x8e0/0x17f0 fs/ext4/file.c:679
call_write_iter include/linux/fs.h:2271 [inline]
do_iter_readv_writev+0x212/0x3c0 fs/read_write.c:735
do_iter_write+0x186/0x710 fs/read_write.c:861
vfs_iter_write+0x70/0xa0 fs/read_write.c:902
iter_file_splice_write+0x73b/0xc90 fs/splice.c:685
do_splice_from fs/splice.c:763 [inline]
direct_splice_actor+0x10f/0x170 fs/splice.c:950
splice_direct_to_actor+0x33a/0xa10 fs/splice.c:896
do_splice_direct+0x1a9/0x280 fs/splice.c:1002
do_sendfile+0xb13/0x12c0 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced
When re-injecting a soft interrupt from an INT3, INT0, or (select) INTn
instruction, discard the exception and retry the instruction if the code
stream is changed (e.g. by a different vCPU) between when the CPU
executes the instruction and when KVM decodes the instruction to get the
next RIP.
As effectively predicted by commit 6ef88d6e36c2 ("KVM: SVM: Re-inject
INT3/INTO instead of retrying the instruction"), failure to verify that
the correct INTn instruction was decoded can effectively clobber guest
state due to decoding the wrong instruction and thus specifying the
wrong next RIP.
The bug most often manifests as "Oops: int3" panics on static branch
checks in Linux guests. Enabling or disabling a static branch in Linux
uses the kernel's "text poke" code patching mechanism. To modify code
while other CPUs may be executing that code, Linux (temporarily)
replaces the first byte of the original instruction with an int3 (opcode
0xcc), then patches in the new code stream except for the first byte,
and finally replaces the int3 with the first byte of the new code
stream. If a CPU hits the int3, i.e. executes the code while it's being
modified, then the guest kernel must look up the RIP to determine how to
handle the #BP, e.g. by emulating the new instruction. If the RIP is
incorrect, then this lookup fails and the guest kernel panics.
The bug reproduces almost instantly by hacking the guest kernel to
repeatedly check a static branch[1] while running a drgn script[2] on
the host to constantly swap out the memory containing the guest's TSS.
[1]: https://gist.github.com/osandov/44d17c51c28c0ac998ea0334edf90b5a
[2]: https://gist.github.com/osandov/10e45e45afa29b11e0c7209247afc00b |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: multiq3: sanitize config options in multiq3_attach()
Syzbot identified an issue [1] in multiq3_attach() that induces a
task timeout due to open() or COMEDI_DEVCONFIG ioctl operations,
specifically, in the case of multiq3 driver.
This problem arose when syzkaller managed to craft weird configuration
options used to specify the number of channels in encoder subdevice.
If a particularly great number is passed to s->n_chan in
multiq3_attach() via it->options[2], then multiple calls to
multiq3_encoder_reset() at the end of driver-specific attach() method
will be running for minutes, thus blocking tasks and affected devices
as well.
While this issue is most likely not too dangerous for real-life
devices, it still makes sense to sanitize configuration inputs. Enable
a sensible limit on the number of encoder chips (4 chips max, each
with 2 channels) to stop this behaviour from manifesting.
[1] Syzbot crash:
INFO: task syz.2.19:6067 blocked for more than 143 seconds.
...
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5254 [inline]
__schedule+0x17c4/0x4d60 kernel/sched/core.c:6862
__schedule_loop kernel/sched/core.c:6944 [inline]
schedule+0x165/0x360 kernel/sched/core.c:6959
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7016
__mutex_lock_common kernel/locking/mutex.c:676 [inline]
__mutex_lock+0x7e6/0x1350 kernel/locking/mutex.c:760
comedi_open+0xc0/0x590 drivers/comedi/comedi_fops.c:2868
chrdev_open+0x4cc/0x5e0 fs/char_dev.c:414
do_dentry_open+0x953/0x13f0 fs/open.c:965
vfs_open+0x3b/0x340 fs/open.c:1097
... |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: check device's attached status in compat ioctls
Syzbot identified an issue [1] that crashes kernel, seemingly due to
unexistent callback dev->get_valid_routes(). By all means, this should
not occur as said callback must always be set to
get_zero_valid_routes() in __comedi_device_postconfig().
As the crash seems to appear exclusively in i386 kernels, at least,
judging from [1] reports, the blame lies with compat versions
of standard IOCTL handlers. Several of them are modified and
do not use comedi_unlocked_ioctl(). While functionality of these
ioctls essentially copy their original versions, they do not
have required sanity check for device's attached status. This,
in turn, leads to a possibility of calling select IOCTLs on a
device that has not been properly setup, even via COMEDI_DEVCONFIG.
Doing so on unconfigured devices means that several crucial steps
are missed, for instance, specifying dev->get_valid_routes()
callback.
Fix this somewhat crudely by ensuring device's attached status before
performing any ioctls, improving logic consistency between modern
and compat functions.
[1] Syzbot report:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
CR2: ffffffffffffffd6 CR3: 000000006c717000 CR4: 0000000000352ef0
Call Trace:
<TASK>
get_valid_routes drivers/comedi/comedi_fops.c:1322 [inline]
parse_insn+0x78c/0x1970 drivers/comedi/comedi_fops.c:1401
do_insnlist_ioctl+0x272/0x700 drivers/comedi/comedi_fops.c:1594
compat_insnlist drivers/comedi/comedi_fops.c:3208 [inline]
comedi_compat_ioctl+0x810/0x990 drivers/comedi/comedi_fops.c:3273
__do_compat_sys_ioctl fs/ioctl.c:695 [inline]
__se_compat_sys_ioctl fs/ioctl.c:638 [inline]
__ia32_compat_sys_ioctl+0x242/0x370 fs/ioctl.c:638
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
... |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser
The Information Element (IE) parser rtw_get_ie() trusted the length
byte of each IE without validating that the IE body (len bytes after
the 2-byte header) fits inside the remaining frame buffer. A malformed
frame can advertise an IE length larger than the available data, causing
the parser to increment its pointer beyond the buffer end. This results
in out-of-bounds reads or, depending on the pattern, an infinite loop.
Fix by validating that (offset + 2 + len) does not exceed the limit
before accepting the IE or advancing to the next element.
This prevents OOB reads and ensures the parser terminates safely on
malformed frames. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix stack buffer overflow in OnAssocReq IE parsing
The Supported Rates IE length from an incoming Association Request frame
was used directly as the memcpy() length when copying into a fixed-size
16-byte stack buffer (supportRate). A malicious station can advertise an
IE length larger than 16 bytes, causing a stack buffer overflow.
Clamp ie_len to the buffer size before copying the Supported Rates IE,
and correct the bounds check when merging Extended Supported Rates to
prevent a second potential overflow.
This prevents kernel stack corruption triggered by malformed association
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix out-of-bounds read in OnBeacon ESR IE parsing
The Extended Supported Rates (ESR) IE handling in OnBeacon accessed
*(p + 1 + ielen) and *(p + 2 + ielen) without verifying that these
offsets lie within the received frame buffer. A malformed beacon with
an ESR IE positioned at the end of the buffer could cause an
out-of-bounds read, potentially triggering a kernel panic.
Add a boundary check to ensure that the ESR IE body and the subsequent
bytes are within the limits of the frame before attempting to access
them.
This prevents OOB reads caused by malformed beacon frames. |