Search

Search Results (327128 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68756 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: Use RCU in blk_mq_[un]quiesce_tagset() instead of set->tag_list_lock blk_mq_{add,del}_queue_tag_set() functions add and remove queues from tagset, the functions make sure that tagset and queues are marked as shared when two or more queues are attached to the same tagset. Initially a tagset starts as unshared and when the number of added queues reaches two, blk_mq_add_queue_tag_set() marks it as shared along with all the queues attached to it. When the number of attached queues drops to 1 blk_mq_del_queue_tag_set() need to mark both the tagset and the remaining queues as unshared. Both functions need to freeze current queues in tagset before setting on unsetting BLK_MQ_F_TAG_QUEUE_SHARED flag. While doing so, both functions hold set->tag_list_lock mutex, which makes sense as we do not want queues to be added or deleted in the process. This used to work fine until commit 98d81f0df70c ("nvme: use blk_mq_[un]quiesce_tagset") made the nvme driver quiesce tagset instead of quiscing individual queues. blk_mq_quiesce_tagset() does the job and quiesce the queues in set->tag_list while holding set->tag_list_lock also. This results in deadlock between two threads with these stacktraces: __schedule+0x47c/0xbb0 ? timerqueue_add+0x66/0xb0 schedule+0x1c/0xa0 schedule_preempt_disabled+0xa/0x10 __mutex_lock.constprop.0+0x271/0x600 blk_mq_quiesce_tagset+0x25/0xc0 nvme_dev_disable+0x9c/0x250 nvme_timeout+0x1fc/0x520 blk_mq_handle_expired+0x5c/0x90 bt_iter+0x7e/0x90 blk_mq_queue_tag_busy_iter+0x27e/0x550 ? __blk_mq_complete_request_remote+0x10/0x10 ? __blk_mq_complete_request_remote+0x10/0x10 ? __call_rcu_common.constprop.0+0x1c0/0x210 blk_mq_timeout_work+0x12d/0x170 process_one_work+0x12e/0x2d0 worker_thread+0x288/0x3a0 ? rescuer_thread+0x480/0x480 kthread+0xb8/0xe0 ? kthread_park+0x80/0x80 ret_from_fork+0x2d/0x50 ? kthread_park+0x80/0x80 ret_from_fork_asm+0x11/0x20 __schedule+0x47c/0xbb0 ? xas_find+0x161/0x1a0 schedule+0x1c/0xa0 blk_mq_freeze_queue_wait+0x3d/0x70 ? destroy_sched_domains_rcu+0x30/0x30 blk_mq_update_tag_set_shared+0x44/0x80 blk_mq_exit_queue+0x141/0x150 del_gendisk+0x25a/0x2d0 nvme_ns_remove+0xc9/0x170 nvme_remove_namespaces+0xc7/0x100 nvme_remove+0x62/0x150 pci_device_remove+0x23/0x60 device_release_driver_internal+0x159/0x200 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x112/0x1e0 vfs_write+0x2b1/0x3d0 ksys_write+0x4e/0xb0 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x4b/0x53 The top stacktrace is showing nvme_timeout() called to handle nvme command timeout. timeout handler is trying to disable the controller and as a first step, it needs to blk_mq_quiesce_tagset() to tell blk-mq not to call queue callback handlers. The thread is stuck waiting for set->tag_list_lock as it tries to walk the queues in set->tag_list. The lock is held by the second thread in the bottom stack which is waiting for one of queues to be frozen. The queue usage counter will drop to zero after nvme_timeout() finishes, and this will not happen because the thread will wait for this mutex forever. Given that [un]quiescing queue is an operation that does not need to sleep, update blk_mq_[un]quiesce_tagset() to use RCU instead of taking set->tag_list_lock, update blk_mq_{add,del}_queue_tag_set() to use RCU safe list operations. Also, delete INIT_LIST_HEAD(&q->tag_set_list) in blk_mq_del_queue_tag_set() because we can not re-initialize it while the list is being traversed under RCU. The deleted queue will not be added/deleted to/from a tagset and it will be freed in blk_free_queue() after the end of RCU grace period.
CVE-2025-68755 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: most: remove broken i2c driver The MOST I2C driver has been completely broken for five years without anyone noticing so remove the driver from staging. Specifically, commit 723de0f9171e ("staging: most: remove device from interface structure") started requiring drivers to set the interface device pointer before registration, but the I2C driver was never updated which results in a NULL pointer dereference if anyone ever tries to probe it.
CVE-2025-68753 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-motu: add bounds check in put_user loop for DSP events In the DSP event handling code, a put_user() loop copies event data. When the user buffer size is not aligned to 4 bytes, it could overwrite beyond the buffer boundary. Fix by adding a bounds check before put_user().
CVE-2025-68746 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: tegra210-quad: Fix timeout handling When the CPU that the QSPI interrupt handler runs on (typically CPU 0) is excessively busy, it can lead to rare cases of the IRQ thread not running before the transfer timeout is reached. While handling the timeouts, any pending transfers are cleaned up and the message that they correspond to is marked as failed, which leaves the curr_xfer field pointing at stale memory. To avoid this, clear curr_xfer to NULL upon timeout and check for this condition when the IRQ thread is finally run. While at it, also make sure to clear interrupts on failure so that new interrupts can be run. A better, more involved, fix would move the interrupt clearing into a hard IRQ handler. Ideally we would also want to signal that the IRQ thread no longer needs to be run after the timeout is hit to avoid the extra check for a valid transfer.
CVE-2025-68744 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Free special fields when update [lru_,]percpu_hash maps As [lru_,]percpu_hash maps support BPF_KPTR_{REF,PERCPU}, missing calls to 'bpf_obj_free_fields()' in 'pcpu_copy_value()' could cause the memory referenced by BPF_KPTR_{REF,PERCPU} fields to be held until the map gets freed. Fix this by calling 'bpf_obj_free_fields()' after 'copy_map_value[,_long]()' in 'pcpu_copy_value()'.
CVE-2025-68742 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix invalid prog->stats access when update_effective_progs fails Syzkaller triggers an invalid memory access issue following fault injection in update_effective_progs. The issue can be described as follows: __cgroup_bpf_detach update_effective_progs compute_effective_progs bpf_prog_array_alloc <-- fault inject purge_effective_progs /* change to dummy_bpf_prog */ array->items[index] = &dummy_bpf_prog.prog ---softirq start--- __do_softirq ... __cgroup_bpf_run_filter_skb __bpf_prog_run_save_cb bpf_prog_run stats = this_cpu_ptr(prog->stats) /* invalid memory access */ flags = u64_stats_update_begin_irqsave(&stats->syncp) ---softirq end--- static_branch_dec(&cgroup_bpf_enabled_key[atype]) The reason is that fault injection caused update_effective_progs to fail and then changed the original prog into dummy_bpf_prog.prog in purge_effective_progs. Then a softirq came, and accessing the members of dummy_bpf_prog.prog in the softirq triggers invalid mem access. To fix it, skip updating stats when stats is NULL.
CVE-2025-68741 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix improper freeing of purex item In qla2xxx_process_purls_iocb(), an item is allocated via qla27xx_copy_multiple_pkt(), which internally calls qla24xx_alloc_purex_item(). The qla24xx_alloc_purex_item() function may return a pre-allocated item from a per-adapter pool for small allocations, instead of dynamically allocating memory with kzalloc(). An error handling path in qla2xxx_process_purls_iocb() incorrectly uses kfree() to release the item. If the item was from the pre-allocated pool, calling kfree() on it is a bug that can lead to memory corruption. Fix this by using the correct deallocation function, qla24xx_free_purex_item(), which properly handles both dynamically allocated and pre-allocated items.
CVE-2025-68740 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ima: Handle error code returned by ima_filter_rule_match() In ima_match_rules(), if ima_filter_rule_match() returns -ENOENT due to the rule being NULL, the function incorrectly skips the 'if (!rc)' check and sets 'result = true'. The LSM rule is considered a match, causing extra files to be measured by IMA. This issue can be reproduced in the following scenario: After unloading the SELinux policy module via 'semodule -d', if an IMA measurement is triggered before ima_lsm_rules is updated, in ima_match_rules(), the first call to ima_filter_rule_match() returns -ESTALE. This causes the code to enter the 'if (rc == -ESTALE && !rule_reinitialized)' block, perform ima_lsm_copy_rule() and retry. In ima_lsm_copy_rule(), since the SELinux module has been removed, the rule becomes NULL, and the second call to ima_filter_rule_match() returns -ENOENT. This bypasses the 'if (!rc)' check and results in a false match. Call trace: selinux_audit_rule_match+0x310/0x3b8 security_audit_rule_match+0x60/0xa0 ima_match_rules+0x2e4/0x4a0 ima_match_policy+0x9c/0x1e8 ima_get_action+0x48/0x60 process_measurement+0xf8/0xa98 ima_bprm_check+0x98/0xd8 security_bprm_check+0x5c/0x78 search_binary_handler+0x6c/0x318 exec_binprm+0x58/0x1b8 bprm_execve+0xb8/0x130 do_execveat_common.isra.0+0x1a8/0x258 __arm64_sys_execve+0x48/0x68 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x44/0x200 el0t_64_sync_handler+0x100/0x130 el0t_64_sync+0x3c8/0x3d0 Fix this by changing 'if (!rc)' to 'if (rc <= 0)' to ensure that error codes like -ENOENT do not bypass the check and accidentally result in a successful match.
CVE-2025-68733 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: smack: fix bug: unprivileged task can create labels If an unprivileged task is allowed to relabel itself (/smack/relabel-self is not empty), it can freely create new labels by writing their names into own /proc/PID/attr/smack/current This occurs because do_setattr() imports the provided label in advance, before checking "relabel-self" list. This change ensures that the "relabel-self" list is checked before importing the label.
CVE-2025-68732 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpu: host1x: Fix race in syncpt alloc/free Fix race condition between host1x_syncpt_alloc() and host1x_syncpt_put() by using kref_put_mutex() instead of kref_put() + manual mutex locking. This ensures no thread can acquire the syncpt_mutex after the refcount drops to zero but before syncpt_release acquires it. This prevents races where syncpoints could be allocated while still being cleaned up from a previous release. Remove explicit mutex locking in syncpt_release as kref_put_mutex() handles this atomically.
CVE-2025-68728 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: fix uninit memory after failed mi_read in mi_format_new Fix a KMSAN un-init bug found by syzkaller. ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be uptodate. We do not bring the buffer uptodate before setting it as uptodate. If the buffer were to not be uptodate, it could mean adding a buffer with un-init data to the mi record. Attempting to load that record will trigger KMSAN. Avoid this by setting the buffer as uptodate, if it’s not already, by overwriting it.
CVE-2025-68727 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: Fix uninit buffer allocated by __getname() Fix uninit errors caused after buffer allocation given to 'de'; by initializing the buffer with zeroes. The fix was found by using KMSAN.
CVE-2025-68724 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: asymmetric_keys - prevent overflow in asymmetric_key_generate_id Use check_add_overflow() to guard against potential integer overflows when adding the binary blob lengths and the size of an asymmetric_key_id structure and return ERR_PTR(-EOVERFLOW) accordingly. This prevents a possible buffer overflow when copying data from potentially malicious X.509 certificate fields that can be arbitrarily large, such as ASN.1 INTEGER serial numbers, issuer names, etc.
CVE-2025-68380 1 Linux 1 Linux Kernel 2026-01-11 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix peer HE MCS assignment In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to firmware as receive MCS while peer's receive MCS sent as transmit MCS, which goes against firmwire's definition. While connecting to a misbehaved AP that advertises 0xffff (meaning not supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff is assigned to he_mcs->rx_mcs_set field. Ext Tag: HE Capabilities [...] Supported HE-MCS and NSS Set [...] Rx and Tx MCS Maps 160 MHz [...] Tx HE-MCS Map 160 MHz: 0xffff Swap the assignment to fix this issue. As the HE rate control mask is meant to limit our own transmit MCS, it needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping done, change is needed as well to apply it to the peer's receive MCS. Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41 Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
CVE-2025-68379 1 Linux 1 Linux Kernel 2026-01-11 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix null deref on srq->rq.queue after resize failure A NULL pointer dereference can occur in rxe_srq_chk_attr() when ibv_modify_srq() is invoked twice in succession under certain error conditions. The first call may fail in rxe_queue_resize(), which leads rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then triggers a crash (null deref) when accessing srq->rq.queue->buf->index_mask. Call Trace: <TASK> rxe_modify_srq+0x170/0x480 [rdma_rxe] ? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe] ? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs] ? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs] ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs] ? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs] ? tryinc_node_nr_active+0xe6/0x150 ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs] ? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs] ? __pfx___raw_spin_lock_irqsave+0x10/0x10 ? __pfx_do_vfs_ioctl+0x10/0x10 ? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0 ? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10 ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs] ? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs] __x64_sys_ioctl+0x138/0x1c0 do_syscall_64+0x82/0x250 ? fdget_pos+0x58/0x4c0 ? ksys_write+0xf3/0x1c0 ? __pfx_ksys_write+0x10/0x10 ? do_syscall_64+0xc8/0x250 ? __pfx_vm_mmap_pgoff+0x10/0x10 ? fget+0x173/0x230 ? fput+0x2a/0x80 ? ksys_mmap_pgoff+0x224/0x4c0 ? do_syscall_64+0xc8/0x250 ? do_user_addr_fault+0x37b/0xfe0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-68372 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2025-68371 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Fix device resources accessed after device removal Correct possible race conditions during device removal. Previously, a scheduled work item to reset a LUN could still execute after the device was removed, leading to use-after-free and other resource access issues. This race condition occurs because the abort handler may schedule a LUN reset concurrently with device removal via sdev_destroy(), leading to use-after-free and improper access to freed resources. - Check in the device reset handler if the device is still present in the controller's SCSI device list before running; if not, the reset is skipped. - Cancel any pending TMF work that has not started in sdev_destroy(). - Ensure device freeing in sdev_destroy() is done while holding the LUN reset mutex to avoid races with ongoing resets.
CVE-2025-68369 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2025-68367 1 Linux 1 Linux Kernel 2026-01-11 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse The following warning appears when running syzkaller, and this issue also exists in the mainline code. ------------[ cut here ]------------ list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100. WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130 Modules linked in: CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__list_add_valid_or_report+0xf7/0x130 RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817 RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001 RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100 R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48 FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 80000000 Call Trace: <TASK> input_register_handler+0xb3/0x210 mac_hid_start_emulation+0x1c5/0x290 mac_hid_toggle_emumouse+0x20a/0x240 proc_sys_call_handler+0x4c2/0x6e0 new_sync_write+0x1b1/0x2d0 vfs_write+0x709/0x950 ksys_write+0x12a/0x250 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x78/0xe2 The WARNING occurs when two processes concurrently write to the mac-hid emulation sysctl, causing a race condition in mac_hid_toggle_emumouse(). Both processes read old_val=0, then both try to register the input handler, leading to a double list_add of the same handler. CPU0 CPU1 ------------------------- ------------------------- vfs_write() //write 1 vfs_write() //write 1 proc_sys_write() proc_sys_write() mac_hid_toggle_emumouse() mac_hid_toggle_emumouse() old_val = *valp // old_val=0 old_val = *valp // old_val=0 mutex_lock_killable() proc_dointvec() // *valp=1 mac_hid_start_emulation() input_register_handler() mutex_unlock() mutex_lock_killable() proc_dointvec() mac_hid_start_emulation() input_register_handler() //Trigger Warning mutex_unlock() Fix this by moving the old_val read inside the mutex lock region.
CVE-2025-68366 1 Linux 1 Linux Kernel 2026-01-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config unlock in nbd_genl_connect There is one use-after-free warning when running NBD_CMD_CONNECT and NBD_CLEAR_SOCK: nbd_genl_connect nbd_alloc_and_init_config // config_refs=1 nbd_start_device // config_refs=2 set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3 recv_work done // config_refs=2 NBD_CLEAR_SOCK // config_refs=1 close nbd // config_refs=0 refcount_inc -> uaf ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290 nbd_genl_connect+0x16d0/0x1ab0 genl_family_rcv_msg_doit+0x1f3/0x310 genl_rcv_msg+0x44a/0x790 The issue can be easily reproduced by adding a small delay before refcount_inc(&nbd->config_refs) in nbd_genl_connect(): mutex_unlock(&nbd->config_lock); if (!ret) { set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags); + printk("before sleep\n"); + mdelay(5 * 1000); + printk("after sleep\n"); refcount_inc(&nbd->config_refs); nbd_connect_reply(info, nbd->index); }