| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: add consistency check for copen/cread
This prevents malicious processes from completing random copen/cread
requests and crashing the system. Added checks are listed below:
* Generic, copen can only complete open requests, and cread can only
complete read requests.
* For copen, ondemand_id must not be 0, because this indicates that the
request has not been read by the daemon.
* For cread, the object corresponding to fd and req should be the same. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Set object to close if ondemand_id < 0 in copen
If copen is maliciously called in the user mode, it may delete the request
corresponding to the random id. And the request may have not been read yet.
Note that when the object is set to reopen, the open request will be done
with the still reopen state in above case. As a result, the request
corresponding to this object is always skipped in select_req function, so
the read request is never completed and blocks other process.
Fix this issue by simply set object to close if its id < 0 in copen. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: PPC: Book3S HV: Prevent UAF in kvm_spapr_tce_attach_iommu_group()
Al reported a possible use-after-free (UAF) in kvm_spapr_tce_attach_iommu_group().
It looks up `stt` from tablefd, but then continues to use it after doing
fdput() on the returned fd. After the fdput() the tablefd is free to be
closed by another thread. The close calls kvm_spapr_tce_release() and
then release_spapr_tce_table() (via call_rcu()) which frees `stt`.
Although there are calls to rcu_read_lock() in
kvm_spapr_tce_attach_iommu_group() they are not sufficient to prevent
the UAF, because `stt` is used outside the locked regions.
With an artifcial delay after the fdput() and a userspace program which
triggers the race, KASAN detects the UAF:
BUG: KASAN: slab-use-after-free in kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm]
Read of size 4 at addr c000200027552c30 by task kvm-vfio/2505
CPU: 54 PID: 2505 Comm: kvm-vfio Not tainted 6.10.0-rc3-next-20240612-dirty #1
Hardware name: 8335-GTH POWER9 0x4e1202 opal:skiboot-v6.5.3-35-g1851b2a06 PowerNV
Call Trace:
dump_stack_lvl+0xb4/0x108 (unreliable)
print_report+0x2b4/0x6ec
kasan_report+0x118/0x2b0
__asan_load4+0xb8/0xd0
kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm]
kvm_vfio_set_attr+0x524/0xac0 [kvm]
kvm_device_ioctl+0x144/0x240 [kvm]
sys_ioctl+0x62c/0x1810
system_call_exception+0x190/0x440
system_call_vectored_common+0x15c/0x2ec
...
Freed by task 0:
...
kfree+0xec/0x3e0
release_spapr_tce_table+0xd4/0x11c [kvm]
rcu_core+0x568/0x16a0
handle_softirqs+0x23c/0x920
do_softirq_own_stack+0x6c/0x90
do_softirq_own_stack+0x58/0x90
__irq_exit_rcu+0x218/0x2d0
irq_exit+0x30/0x80
arch_local_irq_restore+0x128/0x230
arch_local_irq_enable+0x1c/0x30
cpuidle_enter_state+0x134/0x5cc
cpuidle_enter+0x6c/0xb0
call_cpuidle+0x7c/0x100
do_idle+0x394/0x410
cpu_startup_entry+0x60/0x70
start_secondary+0x3fc/0x410
start_secondary_prolog+0x10/0x14
Fix it by delaying the fdput() until `stt` is no longer in use, which
is effectively the entire function. To keep the patch minimal add a call
to fdput() at each of the existing return paths. Future work can convert
the function to goto or __cleanup style cleanup.
With the fix in place the test case no longer triggers the UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/eeh: avoid possible crash when edev->pdev changes
If a PCI device is removed during eeh_pe_report_edev(), edev->pdev
will change and can cause a crash, hold the PCI rescan/remove lock
while taking a copy of edev->pdev->bus. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix uninit-value in copy_name
[syzbot reported]
BUG: KMSAN: uninit-value in sized_strscpy+0xc4/0x160
sized_strscpy+0xc4/0x160
copy_name+0x2af/0x320 fs/hfsplus/xattr.c:411
hfsplus_listxattr+0x11e9/0x1a50 fs/hfsplus/xattr.c:750
vfs_listxattr fs/xattr.c:493 [inline]
listxattr+0x1f3/0x6b0 fs/xattr.c:840
path_listxattr fs/xattr.c:864 [inline]
__do_sys_listxattr fs/xattr.c:876 [inline]
__se_sys_listxattr fs/xattr.c:873 [inline]
__x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873
x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3877 [inline]
slab_alloc_node mm/slub.c:3918 [inline]
kmalloc_trace+0x57b/0xbe0 mm/slub.c:4065
kmalloc include/linux/slab.h:628 [inline]
hfsplus_listxattr+0x4cc/0x1a50 fs/hfsplus/xattr.c:699
vfs_listxattr fs/xattr.c:493 [inline]
listxattr+0x1f3/0x6b0 fs/xattr.c:840
path_listxattr fs/xattr.c:864 [inline]
__do_sys_listxattr fs/xattr.c:876 [inline]
__se_sys_listxattr fs/xattr.c:873 [inline]
__x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873
x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[Fix]
When allocating memory to strbuf, initialize memory to 0. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in fscache_withdraw_volume()
We got the following issue in our fault injection stress test:
==================================================================
BUG: KASAN: slab-use-after-free in fscache_withdraw_volume+0x2e1/0x370
Read of size 4 at addr ffff88810680be08 by task ondemand-04-dae/5798
CPU: 0 PID: 5798 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #565
Call Trace:
kasan_check_range+0xf6/0x1b0
fscache_withdraw_volume+0x2e1/0x370
cachefiles_withdraw_volume+0x31/0x50
cachefiles_withdraw_cache+0x3ad/0x900
cachefiles_put_unbind_pincount+0x1f6/0x250
cachefiles_daemon_release+0x13b/0x290
__fput+0x204/0xa00
task_work_run+0x139/0x230
Allocated by task 5820:
__kmalloc+0x1df/0x4b0
fscache_alloc_volume+0x70/0x600
__fscache_acquire_volume+0x1c/0x610
erofs_fscache_register_volume+0x96/0x1a0
erofs_fscache_register_fs+0x49a/0x690
erofs_fc_fill_super+0x6c0/0xcc0
vfs_get_super+0xa9/0x140
vfs_get_tree+0x8e/0x300
do_new_mount+0x28c/0x580
[...]
Freed by task 5820:
kfree+0xf1/0x2c0
fscache_put_volume.part.0+0x5cb/0x9e0
erofs_fscache_unregister_fs+0x157/0x1b0
erofs_kill_sb+0xd9/0x1c0
deactivate_locked_super+0xa3/0x100
vfs_get_super+0x105/0x140
vfs_get_tree+0x8e/0x300
do_new_mount+0x28c/0x580
[...]
==================================================================
Following is the process that triggers the issue:
mount failed | daemon exit
------------------------------------------------------------
deactivate_locked_super cachefiles_daemon_release
erofs_kill_sb
erofs_fscache_unregister_fs
fscache_relinquish_volume
__fscache_relinquish_volume
fscache_put_volume(fscache_volume, fscache_volume_put_relinquish)
zero = __refcount_dec_and_test(&fscache_volume->ref, &ref);
cachefiles_put_unbind_pincount
cachefiles_daemon_unbind
cachefiles_withdraw_cache
cachefiles_withdraw_volumes
list_del_init(&volume->cache_link)
fscache_free_volume(fscache_volume)
cache->ops->free_volume
cachefiles_free_volume
list_del_init(&cachefiles_volume->cache_link);
kfree(fscache_volume)
cachefiles_withdraw_volume
fscache_withdraw_volume
fscache_volume->n_accesses
// fscache_volume UAF !!!
The fscache_volume in cache->volumes must not have been freed yet, but its
reference count may be 0. So use the new fscache_try_get_volume() helper
function try to get its reference count.
If the reference count of fscache_volume is 0, fscache_put_volume() is
freeing it, so wait for it to be removed from cache->volumes.
If its reference count is not 0, call cachefiles_withdraw_volume() with
reference count protection to avoid the above issue. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie()
We got the following issue in our fault injection stress test:
==================================================================
BUG: KASAN: slab-use-after-free in cachefiles_withdraw_cookie+0x4d9/0x600
Read of size 8 at addr ffff888118efc000 by task kworker/u78:0/109
CPU: 13 PID: 109 Comm: kworker/u78:0 Not tainted 6.8.0-dirty #566
Call Trace:
<TASK>
kasan_report+0x93/0xc0
cachefiles_withdraw_cookie+0x4d9/0x600
fscache_cookie_state_machine+0x5c8/0x1230
fscache_cookie_worker+0x91/0x1c0
process_one_work+0x7fa/0x1800
[...]
Allocated by task 117:
kmalloc_trace+0x1b3/0x3c0
cachefiles_acquire_volume+0xf3/0x9c0
fscache_create_volume_work+0x97/0x150
process_one_work+0x7fa/0x1800
[...]
Freed by task 120301:
kfree+0xf1/0x2c0
cachefiles_withdraw_cache+0x3fa/0x920
cachefiles_put_unbind_pincount+0x1f6/0x250
cachefiles_daemon_release+0x13b/0x290
__fput+0x204/0xa00
task_work_run+0x139/0x230
do_exit+0x87a/0x29b0
[...]
==================================================================
Following is the process that triggers the issue:
p1 | p2
------------------------------------------------------------
fscache_begin_lookup
fscache_begin_volume_access
fscache_cache_is_live(fscache_cache)
cachefiles_daemon_release
cachefiles_put_unbind_pincount
cachefiles_daemon_unbind
cachefiles_withdraw_cache
fscache_withdraw_cache
fscache_set_cache_state(cache, FSCACHE_CACHE_IS_WITHDRAWN);
cachefiles_withdraw_objects(cache)
fscache_wait_for_objects(fscache)
atomic_read(&fscache_cache->object_count) == 0
fscache_perform_lookup
cachefiles_lookup_cookie
cachefiles_alloc_object
refcount_set(&object->ref, 1);
object->volume = volume
fscache_count_object(vcookie->cache);
atomic_inc(&fscache_cache->object_count)
cachefiles_withdraw_volumes
cachefiles_withdraw_volume
fscache_withdraw_volume
__cachefiles_free_volume
kfree(cachefiles_volume)
fscache_cookie_state_machine
cachefiles_withdraw_cookie
cache = object->volume->cache;
// cachefiles_volume UAF !!!
After setting FSCACHE_CACHE_IS_WITHDRAWN, wait for all the cookie lookups
to complete first, and then wait for fscache_cache->object_count == 0 to
avoid the cookie exiting after the volume has been freed and triggering
the above issue. Therefore call fscache_withdraw_volume() before calling
cachefiles_withdraw_objects().
This way, after setting FSCACHE_CACHE_IS_WITHDRAWN, only the following two
cases will occur:
1) fscache_begin_lookup fails in fscache_begin_volume_access().
2) fscache_withdraw_volume() will ensure that fscache_count_object() has
been executed before calling fscache_wait_for_objects(). |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Use strnlen() on name fields in V1 wmfw files
Use strnlen() instead of strlen() on the algorithm and coefficient name
string arrays in V1 wmfw files.
In V1 wmfw files the name is a NUL-terminated string in a fixed-size
array. cs_dsp should protect against overrunning the array if the NUL
terminator is missing. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: prevent derefencing NULL ptr in pfn_section_valid()
Commit 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing
memory_section->usage") changed pfn_section_valid() to add a READ_ONCE()
call around "ms->usage" to fix a race with section_deactivate() where
ms->usage can be cleared. The READ_ONCE() call, by itself, is not enough
to prevent NULL pointer dereference. We need to check its value before
dereferencing it. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: wait for ondemand_object_worker to finish when dropping object
When queuing ondemand_object_worker() to re-open the object,
cachefiles_object is not pinned. The cachefiles_object may be freed when
the pending read request is completed intentionally and the related
erofs is umounted. If ondemand_object_worker() runs after the object is
freed, it will incur use-after-free problem as shown below.
process A processs B process C process D
cachefiles_ondemand_send_req()
// send a read req X
// wait for its completion
// close ondemand fd
cachefiles_ondemand_fd_release()
// set object as CLOSE
cachefiles_ondemand_daemon_read()
// set object as REOPENING
queue_work(fscache_wq, &info->ondemand_work)
// close /dev/cachefiles
cachefiles_daemon_release
cachefiles_flush_reqs
complete(&req->done)
// read req X is completed
// umount the erofs fs
cachefiles_put_object()
// object will be freed
cachefiles_ondemand_deinit_obj_info()
kmem_cache_free(object)
// both info and object are freed
ondemand_object_worker()
When dropping an object, it is no longer necessary to reopen the object,
so use cancel_work_sync() to cancel or wait for ondemand_object_worker()
to finish. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: cyclic allocation of msg_id to avoid reuse
Reusing the msg_id after a maliciously completed reopen request may cause
a read request to remain unprocessed and result in a hung, as shown below:
t1 | t2 | t3
-------------------------------------------------
cachefiles_ondemand_select_req
cachefiles_ondemand_object_is_close(A)
cachefiles_ondemand_set_object_reopening(A)
queue_work(fscache_object_wq, &info->work)
ondemand_object_worker
cachefiles_ondemand_init_object(A)
cachefiles_ondemand_send_req(OPEN)
// get msg_id 6
wait_for_completion(&req_A->done)
cachefiles_ondemand_daemon_read
// read msg_id 6 req_A
cachefiles_ondemand_get_fd
copy_to_user
// Malicious completion msg_id 6
copen 6,-1
cachefiles_ondemand_copen
complete(&req_A->done)
// will not set the object to close
// because ondemand_id && fd is valid.
// ondemand_object_worker() is done
// but the object is still reopening.
// new open req_B
cachefiles_ondemand_init_object(B)
cachefiles_ondemand_send_req(OPEN)
// reuse msg_id 6
process_open_req
copen 6,A.size
// The expected failed copen was executed successfully
Expect copen to fail, and when it does, it closes fd, which sets the
object to close, and then close triggers reopen again. However, due to
msg_id reuse resulting in a successful copen, the anonymous fd is not
closed until the daemon exits. Therefore read requests waiting for reopen
to complete may trigger hung task.
To avoid this issue, allocate the msg_id cyclically to avoid reusing the
msg_id for a very short duration of time. |
| In the Linux kernel, the following vulnerability has been resolved:
filelock: fix potential use-after-free in posix_lock_inode
Light Hsieh reported a KASAN UAF warning in trace_posix_lock_inode().
The request pointer had been changed earlier to point to a lock entry
that was added to the inode's list. However, before the tracepoint could
fire, another task raced in and freed that lock.
Fix this by moving the tracepoint inside the spinlock, which should
ensure that this doesn't happen. |
| In the Linux kernel, the following vulnerability has been resolved:
skmsg: Skip zero length skb in sk_msg_recvmsg
When running BPF selftests (./test_progs -t sockmap_basic) on a Loongarch
platform, the following kernel panic occurs:
[...]
Oops[#1]:
CPU: 22 PID: 2824 Comm: test_progs Tainted: G OE 6.10.0-rc2+ #18
Hardware name: LOONGSON Dabieshan/Loongson-TC542F0, BIOS Loongson-UDK2018
... ...
ra: 90000000048bf6c0 sk_msg_recvmsg+0x120/0x560
ERA: 9000000004162774 copy_page_to_iter+0x74/0x1c0
CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
PRMD: 0000000c (PPLV0 +PIE +PWE)
EUEN: 00000007 (+FPE +SXE +ASXE -BTE)
ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7)
ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0)
BADV: 0000000000000040
PRID: 0014c011 (Loongson-64bit, Loongson-3C5000)
Modules linked in: bpf_testmod(OE) xt_CHECKSUM xt_MASQUERADE xt_conntrack
Process test_progs (pid: 2824, threadinfo=0000000000863a31, task=...)
Stack : ...
Call Trace:
[<9000000004162774>] copy_page_to_iter+0x74/0x1c0
[<90000000048bf6c0>] sk_msg_recvmsg+0x120/0x560
[<90000000049f2b90>] tcp_bpf_recvmsg_parser+0x170/0x4e0
[<90000000049aae34>] inet_recvmsg+0x54/0x100
[<900000000481ad5c>] sock_recvmsg+0x7c/0xe0
[<900000000481e1a8>] __sys_recvfrom+0x108/0x1c0
[<900000000481e27c>] sys_recvfrom+0x1c/0x40
[<9000000004c076ec>] do_syscall+0x8c/0xc0
[<9000000003731da4>] handle_syscall+0xc4/0x160
Code: ...
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Fatal exception
Kernel relocated by 0x3510000
.text @ 0x9000000003710000
.data @ 0x9000000004d70000
.bss @ 0x9000000006469400
---[ end Kernel panic - not syncing: Fatal exception ]---
[...]
This crash happens every time when running sockmap_skb_verdict_shutdown
subtest in sockmap_basic.
This crash is because a NULL pointer is passed to page_address() in the
sk_msg_recvmsg(). Due to the different implementations depending on the
architecture, page_address(NULL) will trigger a panic on Loongarch
platform but not on x86 platform. So this bug was hidden on x86 platform
for a while, but now it is exposed on Loongarch platform. The root cause
is that a zero length skb (skb->len == 0) was put on the queue.
This zero length skb is a TCP FIN packet, which was sent by shutdown(),
invoked in test_sockmap_skb_verdict_shutdown():
shutdown(p1, SHUT_WR);
In this case, in sk_psock_skb_ingress_enqueue(), num_sge is zero, and no
page is put to this sge (see sg_set_page in sg_set_page), but this empty
sge is queued into ingress_msg list.
And in sk_msg_recvmsg(), this empty sge is used, and a NULL page is got by
sg_page(sge). Pass this NULL page to copy_page_to_iter(), which passes it
to kmap_local_page() and to page_address(), then kernel panics.
To solve this, we should skip this zero length skb. So in sk_msg_recvmsg(),
if copy is zero, that means it's a zero length skb, skip invoking
copy_page_to_iter(). We are using the EFAULT return triggered by
copy_page_to_iter to check for is_fin in tcp_bpf.c. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix XDP program unloading while removing the driver
The commit 6533e558c650 ("i40e: Fix reset path while removing
the driver") introduced a new PF state "__I40E_IN_REMOVE" to block
modifying the XDP program while the driver is being removed.
Unfortunately, such a change is useful only if the ".ndo_bpf()"
callback was called out of the rmmod context because unloading the
existing XDP program is also a part of driver removing procedure.
In other words, from the rmmod context the driver is expected to
unload the XDP program without reporting any errors. Otherwise,
the kernel warning with callstack is printed out to dmesg.
Example failing scenario:
1. Load the i40e driver.
2. Load the XDP program.
3. Unload the i40e driver (using "rmmod" command).
The example kernel warning log:
[ +0.004646] WARNING: CPU: 94 PID: 10395 at net/core/dev.c:9290 unregister_netdevice_many_notify+0x7a9/0x870
[...]
[ +0.010959] RIP: 0010:unregister_netdevice_many_notify+0x7a9/0x870
[...]
[ +0.002726] Call Trace:
[ +0.002457] <TASK>
[ +0.002119] ? __warn+0x80/0x120
[ +0.003245] ? unregister_netdevice_many_notify+0x7a9/0x870
[ +0.005586] ? report_bug+0x164/0x190
[ +0.003678] ? handle_bug+0x3c/0x80
[ +0.003503] ? exc_invalid_op+0x17/0x70
[ +0.003846] ? asm_exc_invalid_op+0x1a/0x20
[ +0.004200] ? unregister_netdevice_many_notify+0x7a9/0x870
[ +0.005579] ? unregister_netdevice_many_notify+0x3cc/0x870
[ +0.005586] unregister_netdevice_queue+0xf7/0x140
[ +0.004806] unregister_netdev+0x1c/0x30
[ +0.003933] i40e_vsi_release+0x87/0x2f0 [i40e]
[ +0.004604] i40e_remove+0x1a1/0x420 [i40e]
[ +0.004220] pci_device_remove+0x3f/0xb0
[ +0.003943] device_release_driver_internal+0x19f/0x200
[ +0.005243] driver_detach+0x48/0x90
[ +0.003586] bus_remove_driver+0x6d/0xf0
[ +0.003939] pci_unregister_driver+0x2e/0xb0
[ +0.004278] i40e_exit_module+0x10/0x5f0 [i40e]
[ +0.004570] __do_sys_delete_module.isra.0+0x197/0x310
[ +0.005153] do_syscall_64+0x85/0x170
[ +0.003684] ? syscall_exit_to_user_mode+0x69/0x220
[ +0.004886] ? do_syscall_64+0x95/0x170
[ +0.003851] ? exc_page_fault+0x7e/0x180
[ +0.003932] entry_SYSCALL_64_after_hwframe+0x71/0x79
[ +0.005064] RIP: 0033:0x7f59dc9347cb
[ +0.003648] Code: 73 01 c3 48 8b 0d 65 16 0c 00 f7 d8 64 89 01 48 83
c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 b0 00 00 00 0f
05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 16 0c 00 f7 d8 64 89 01 48
[ +0.018753] RSP: 002b:00007ffffac99048 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
[ +0.007577] RAX: ffffffffffffffda RBX: 0000559b9bb2f6e0 RCX: 00007f59dc9347cb
[ +0.007140] RDX: 0000000000000000 RSI: 0000000000000800 RDI: 0000559b9bb2f748
[ +0.007146] RBP: 00007ffffac99070 R08: 1999999999999999 R09: 0000000000000000
[ +0.007133] R10: 00007f59dc9a5ac0 R11: 0000000000000206 R12: 0000000000000000
[ +0.007141] R13: 00007ffffac992d8 R14: 0000559b9bb2f6e0 R15: 0000000000000000
[ +0.007151] </TASK>
[ +0.002204] ---[ end trace 0000000000000000 ]---
Fix this by checking if the XDP program is being loaded or unloaded.
Then, block only loading a new program while "__I40E_IN_REMOVE" is set.
Also, move testing "__I40E_IN_REMOVE" flag to the beginning of XDP_SETUP
callback to avoid unnecessary operations and checks. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: lantiq_etop: fix double free in detach
The number of the currently released descriptor is never incremented
which results in the same skb being released multiple times. |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: reject claimed-as-LCP but actually malformed packets
Since 'ppp_async_encode()' assumes valid LCP packets (with code
from 1 to 7 inclusive), add 'ppp_check_packet()' to ensure that
LCP packet has an actual body beyond PPP_LCP header bytes, and
reject claimed-as-LCP but actually malformed data otherwise. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: prefer nft_chain_validate
nft_chain_validate already performs loop detection because a cycle will
result in a call stack overflow (ctx->level >= NFT_JUMP_STACK_SIZE).
It also follows maps via ->validate callback in nft_lookup, so there
appears no reason to iterate the maps again.
nf_tables_check_loops() and all its helper functions can be removed.
This improves ruleset load time significantly, from 23s down to 12s.
This also fixes a crash bug. Old loop detection code can result in
unbounded recursion:
BUG: TASK stack guard page was hit at ....
Oops: stack guard page: 0000 [#1] PREEMPT SMP KASAN
CPU: 4 PID: 1539 Comm: nft Not tainted 6.10.0-rc5+ #1
[..]
with a suitable ruleset during validation of register stores.
I can't see any actual reason to attempt to check for this from
nft_validate_register_store(), at this point the transaction is still in
progress, so we don't have a full picture of the rule graph.
For nf-next it might make sense to either remove it or make this depend
on table->validate_state in case we could catch an error earlier
(for improved error reporting to userspace). |
| In the Linux kernel, the following vulnerability has been resolved:
udp: Set SOCK_RCU_FREE earlier in udp_lib_get_port().
syzkaller triggered the warning [0] in udp_v4_early_demux().
In udp_v[46]_early_demux() and sk_lookup(), we do not touch the refcount
of the looked-up sk and use sock_pfree() as skb->destructor, so we check
SOCK_RCU_FREE to ensure that the sk is safe to access during the RCU grace
period.
Currently, SOCK_RCU_FREE is flagged for a bound socket after being put
into the hash table. Moreover, the SOCK_RCU_FREE check is done too early
in udp_v[46]_early_demux() and sk_lookup(), so there could be a small race
window:
CPU1 CPU2
---- ----
udp_v4_early_demux() udp_lib_get_port()
| |- hlist_add_head_rcu()
|- sk = __udp4_lib_demux_lookup() |
|- DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
`- sock_set_flag(sk, SOCK_RCU_FREE)
We had the same bug in TCP and fixed it in commit 871019b22d1b ("net:
set SOCK_RCU_FREE before inserting socket into hashtable").
Let's apply the same fix for UDP.
[0]:
WARNING: CPU: 0 PID: 11198 at net/ipv4/udp.c:2599 udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599
Modules linked in:
CPU: 0 PID: 11198 Comm: syz-executor.1 Not tainted 6.9.0-g93bda33046e7 #13
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599
Code: c5 7a 15 fe bb 01 00 00 00 44 89 e9 31 ff d3 e3 81 e3 bf ef ff ff 89 de e8 2c 74 15 fe 85 db 0f 85 02 06 00 00 e8 9f 7a 15 fe <0f> 0b e8 98 7a 15 fe 49 8d 7e 60 e8 4f 39 2f fe 49 c7 46 60 20 52
RSP: 0018:ffffc9000ce3fa58 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8318c92c
RDX: ffff888036ccde00 RSI: ffffffff8318c2f1 RDI: 0000000000000001
RBP: ffff88805a2dd6e0 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0001ffffffffffff R12: ffff88805a2dd680
R13: 0000000000000007 R14: ffff88800923f900 R15: ffff88805456004e
FS: 00007fc449127640(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc449126e38 CR3: 000000003de4b002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<TASK>
ip_rcv_finish_core.constprop.0+0xbdd/0xd20 net/ipv4/ip_input.c:349
ip_rcv_finish+0xda/0x150 net/ipv4/ip_input.c:447
NF_HOOK include/linux/netfilter.h:314 [inline]
NF_HOOK include/linux/netfilter.h:308 [inline]
ip_rcv+0x16c/0x180 net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0xb3/0xe0 net/core/dev.c:5624
__netif_receive_skb+0x21/0xd0 net/core/dev.c:5738
netif_receive_skb_internal net/core/dev.c:5824 [inline]
netif_receive_skb+0x271/0x300 net/core/dev.c:5884
tun_rx_batched drivers/net/tun.c:1549 [inline]
tun_get_user+0x24db/0x2c50 drivers/net/tun.c:2002
tun_chr_write_iter+0x107/0x1a0 drivers/net/tun.c:2048
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0x76f/0x8d0 fs/read_write.c:590
ksys_write+0xbf/0x190 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x41/0x50 fs/read_write.c:652
x64_sys_call+0xe66/0x1990 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4b/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fc44a68bc1f
Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 e9 cf f5 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 3c d0 f5 ff 48
RSP: 002b:00007fc449126c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00000000004bc050 RCX: 00007fc44a68bc1f
R
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: Fix UAF when resolving a clash
KASAN reports the following UAF:
BUG: KASAN: slab-use-after-free in tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct]
Read of size 1 at addr ffff888c07603600 by task handler130/6469
Call Trace:
<IRQ>
dump_stack_lvl+0x48/0x70
print_address_description.constprop.0+0x33/0x3d0
print_report+0xc0/0x2b0
kasan_report+0xd0/0x120
__asan_load1+0x6c/0x80
tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct]
tcf_ct_act+0x886/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
__irq_exit_rcu+0x82/0xc0
irq_exit_rcu+0xe/0x20
common_interrupt+0xa1/0xb0
</IRQ>
<TASK>
asm_common_interrupt+0x27/0x40
Allocated by task 6469:
kasan_save_stack+0x38/0x70
kasan_set_track+0x25/0x40
kasan_save_alloc_info+0x1e/0x40
__kasan_krealloc+0x133/0x190
krealloc+0xaa/0x130
nf_ct_ext_add+0xed/0x230 [nf_conntrack]
tcf_ct_act+0x1095/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
Freed by task 6469:
kasan_save_stack+0x38/0x70
kasan_set_track+0x25/0x40
kasan_save_free_info+0x2b/0x60
____kasan_slab_free+0x180/0x1f0
__kasan_slab_free+0x12/0x30
slab_free_freelist_hook+0xd2/0x1a0
__kmem_cache_free+0x1a2/0x2f0
kfree+0x78/0x120
nf_conntrack_free+0x74/0x130 [nf_conntrack]
nf_ct_destroy+0xb2/0x140 [nf_conntrack]
__nf_ct_resolve_clash+0x529/0x5d0 [nf_conntrack]
nf_ct_resolve_clash+0xf6/0x490 [nf_conntrack]
__nf_conntrack_confirm+0x2c6/0x770 [nf_conntrack]
tcf_ct_act+0x12ad/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
The ct may be dropped if a clash has been resolved but is still passed to
the tcf_ct_flow_table_process_conn function for further usage. This issue
can be fixed by retrieving ct from skb again after confirming conntrack. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix overflow checking of wmfw header
Fix the checking that firmware file buffer is large enough for the
wmfw header, to prevent overrunning the buffer.
The original code tested that the firmware data buffer contained
enough bytes for the sums of the size of the structs
wmfw_header + wmfw_adsp1_sizes + wmfw_footer
But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and
Halo Core the equivalent struct is wmfw_adsp2_sizes, which is
4 bytes longer. So the length check didn't guarantee that there
are enough bytes in the firmware buffer for a header with
wmfw_adsp2_sizes.
This patch splits the length check into three separate parts. Each
of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked
separately before they are used. |