| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1962, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1963, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1964, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, and CVE-2015-1965. |
| Stack-based buffer overflow in the server in IBM Tivoli Storage Manager FastBack 6.1 before 6.1.12 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors, a different vulnerability than CVE-2015-1924, CVE-2015-1925, CVE-2015-1929, CVE-2015-1930, CVE-2015-1948, CVE-2015-1953, CVE-2015-1954, CVE-2015-1962, CVE-2015-1963, and CVE-2015-1964. |
| Microsoft Internet Explorer 10 and 11 and Microsoft Edge allow remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Memory Corruption Vulnerability." |
| The kernel in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT Gold and 8.1, and Windows 10 allows local users to gain privileges via a crafted application, aka "Windows Kernel Memory Corruption Vulnerability." |
| Buffer overflow in Microsoft Visio 2007 SP3 and 2010 SP2 allows remote attackers to execute arbitrary code via crafted UML data in an Office document, aka "Microsoft Office Memory Corruption Vulnerability." |
| Stack-based buffer overflow in the get_matching_model_microcode function in arch/x86/kernel/cpu/microcode/intel_early.c in the Linux kernel before 4.0 allows context-dependent attackers to gain privileges by constructing a crafted microcode header and leveraging root privileges for write access to the initrd. |
| The iakerb_gss_export_sec_context function in lib/gssapi/krb5/iakerb.c in MIT Kerberos 5 (aka krb5) 1.14 pre-release 2015-09-14 improperly accesses a certain pointer, which allows remote authenticated users to cause a denial of service (memory corruption) or possibly have unspecified other impact by interacting with an application that calls the gss_export_sec_context function. NOTE: this vulnerability exists because of an incorrect fix for CVE-2015-2696. |
| Heap-based buffer overflow in the SVGTextFrame class in Mozilla Firefox before 38.0, Firefox ESR 31.x before 31.7, and Thunderbird before 31.7 allows remote attackers to execute arbitrary code via crafted SVG graphics data in conjunction with a crafted Cascading Style Sheets (CSS) token sequence. |
| The asm.js implementation in Mozilla Firefox before 38.0 does not properly determine heap lengths during identification of cases in which bounds checking may be safely skipped, which allows remote attackers to trigger out-of-bounds write operations and possibly execute arbitrary code, or trigger out-of-bounds read operations and possibly obtain sensitive information from process memory, via crafted JavaScript. |
| Buffer overflow in the XML parser in Mozilla Firefox before 38.0, Firefox ESR 31.x before 31.7, and Thunderbird before 31.7 allows remote attackers to execute arbitrary code by providing a large amount of compressed XML data, a related issue to CVE-2015-1283. |
| Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 39.0, Firefox ESR 31.x before 31.8 and 38.x before 38.1, and Thunderbird before 38.1 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors. |
| Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 39.0, Firefox ESR 38.x before 38.1, and Thunderbird before 38.1 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors. |