Search Results (4270 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2020-11909 1 Treck 1 Tcp\/ip 2025-09-30 9.1 Critical
The Treck TCP/IP stack before 6.0.1.66 has an IPv4 Integer Underflow.
CVE-2020-11904 1 Treck 1 Tcp\/ip 2025-09-30 7.3 High
The Treck TCP/IP stack before 6.0.1.66 has an Integer Overflow during Memory Allocation that causes an Out-of-Bounds Write.
CVE-2025-20311 1 Cisco 1 Ios Xe Software 2025-09-30 7.4 High
A vulnerability in the handling of certain Ethernet frames in Cisco IOS XE Software for Catalyst 9000 Series Switches could allow an unauthenticated, adjacent attacker to cause an egress port to become blocked and drop all outbound traffic. This vulnerability is due to improper handling of crafted Ethernet frames. An attacker could exploit this vulnerability by sending crafted Ethernet frames through an affected switch. A successful exploit could allow the attacker to cause the egress port to which the crafted frame is forwarded to start dropping all frames, resulting in a denial of service (DoS) condition.
CVE-2025-40907 2 Fastcgi, Redhat 7 Fcgi, Enterprise Linux, Rhel Aus and 4 more 2025-09-29 5.3 Medium
FCGI versions 0.44 through 0.82, for Perl, include a vulnerable version of the FastCGI fcgi2 (aka fcgi) library. The included FastCGI library is affected by CVE-2025-23016, causing an integer overflow (and resultant heap-based buffer overflow) via crafted nameLen or valueLen values in data to the IPC socket. This occurs in ReadParams in fcgiapp.c.
CVE-2025-59800 1 Artifex 1 Ghostscript 2025-09-25 4.3 Medium
In Artifex Ghostscript through 10.05.1, ocr_begin_page in devices/gdevpdfocr.c has an integer overflow that leads to a heap-based buffer overflow in ocr_line8.
CVE-2023-52676 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Guard stack limits against 32bit overflow This patch promotes the arithmetic around checking stack bounds to be done in the 64-bit domain, instead of the current 32bit. The arithmetic implies adding together a 64-bit register with a int offset. The register was checked to be below 1<<29 when it was variable, but not when it was fixed. The offset either comes from an instruction (in which case it is 16 bit), from another register (in which case the caller checked it to be below 1<<29 [1]), or from the size of an argument to a kfunc (in which case it can be a u32 [2]). Between the register being inconsistently checked to be below 1<<29, and the offset being up to an u32, it appears that we were open to overflowing the `int`s which were currently used for arithmetic. [1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498 [2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904
CVE-2025-10892 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-09-25 8.8 High
Integer overflow in V8 in Google Chrome prior to 140.0.7339.207 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2022-36934 1 Whatsapp 2 Whatsapp, Whatsapp Business 2025-09-24 9.8 Critical
An integer overflow in WhatsApp could result in remote code execution in an established video call.
CVE-2021-47496 1 Linux 1 Linux Kernel 2025-09-24 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net/tls: Fix flipped sign in tls_err_abort() calls sk->sk_err appears to expect a positive value, a convention that ktls doesn't always follow and that leads to memory corruption in other code. For instance, [kworker] tls_encrypt_done(..., err=<negative error from crypto request>) tls_err_abort(.., err) sk->sk_err = err; [task] splice_from_pipe_feed ... tls_sw_do_sendpage if (sk->sk_err) { ret = -sk->sk_err; // ret is positive splice_from_pipe_feed (continued) ret = actor(...) // ret is still positive and interpreted as bytes // written, resulting in underflow of buf->len and // sd->len, leading to huge buf->offset and bogus // addresses computed in later calls to actor() Fix all tls_err_abort() callers to pass a negative error code consistently and centralize the error-prone sign flip there, throwing in a warning to catch future misuse and uninlining the function so it really does only warn once.
CVE-2024-56368 1 Linux 1 Linux Kernel 2025-09-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix overflow in __rb_map_vma An overflow occurred when performing the following calculation: nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; Add a check before the calculation to avoid this problem. syzbot reported this as a slab-out-of-bounds in __rb_map_vma: BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058 Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836 CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xc3/0x620 mm/kasan/report.c:489 kasan_report+0xd9/0x110 mm/kasan/report.c:602 __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058 ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138 tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482 call_mmap include/linux/fs.h:2183 [inline] mmap_file mm/internal.h:124 [inline] __mmap_new_file_vma mm/vma.c:2291 [inline] __mmap_new_vma mm/vma.c:2355 [inline] __mmap_region+0x1786/0x2670 mm/vma.c:2456 mmap_region+0x127/0x320 mm/mmap.c:1348 do_mmap+0xc00/0xfc0 mm/mmap.c:496 vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580 ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542 __do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline] __se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline] __x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The reproducer for this bug is: ------------------------8<------------------------- #include <fcntl.h> #include <stdlib.h> #include <unistd.h> #include <asm/types.h> #include <sys/mman.h> int main(int argc, char **argv) { int page_size = getpagesize(); int fd; void *meta; system("echo 1 > /sys/kernel/tracing/buffer_size_kb"); fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY); meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5); } ------------------------>8-------------------------
CVE-2022-49197 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: af_netlink: Fix shift out of bounds in group mask calculation When a netlink message is received, netlink_recvmsg() fills in the address of the sender. One of the fields is the 32-bit bitfield nl_groups, which carries the multicast group on which the message was received. The least significant bit corresponds to group 1, and therefore the highest group that the field can represent is 32. Above that, the UB sanitizer flags the out-of-bounds shift attempts. Which bits end up being set in such case is implementation defined, but it's either going to be a wrong non-zero value, or zero, which is at least not misleading. Make the latter choice deterministic by always setting to 0 for higher-numbered multicast groups. To get information about membership in groups >= 32, userspace is expected to use nl_pktinfo control messages[0], which are enabled by NETLINK_PKTINFO socket option. [0] https://lwn.net/Articles/147608/ The way to trigger this issue is e.g. through monitoring the BRVLAN group: # bridge monitor vlan & # ip link add name br type bridge Which produces the following citation: UBSAN: shift-out-of-bounds in net/netlink/af_netlink.c:162:19 shift exponent 32 is too large for 32-bit type 'int'
CVE-2022-49222 1 Linux 1 Linux Kernel 2025-09-22 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/bridge: anx7625: Fix overflow issue on reading EDID The length of EDID block can be longer than 256 bytes, so we should use `int` instead of `u8` for the `edid_pos` variable.
CVE-2025-7985 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt VC6 File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25704.
CVE-2025-7982 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt LI File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25476.
CVE-2022-49320 1 Linux 1 Linux Kernel 2025-09-22 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dmaengine: zynqmp_dma: In struct zynqmp_dma_chan fix desc_size data type In zynqmp_dma_alloc/free_chan_resources functions there is a potential overflow in the below expressions. dma_alloc_coherent(chan->dev, (2 * chan->desc_size * ZYNQMP_DMA_NUM_DESCS), &chan->desc_pool_p, GFP_KERNEL); dma_free_coherent(chan->dev,(2 * ZYNQMP_DMA_DESC_SIZE(chan) * ZYNQMP_DMA_NUM_DESCS), chan->desc_pool_v, chan->desc_pool_p); The arguments desc_size and ZYNQMP_DMA_NUM_DESCS were 32 bit. Though this overflow condition is not observed but it is a potential problem in the case of 32-bit multiplication. Hence fix it by changing the desc_size data type to size_t. In addition to coverity fix it also reuse ZYNQMP_DMA_DESC_SIZE macro in dma_alloc_coherent API argument. Addresses-Coverity: Event overflow_before_widen.
CVE-2022-49278 1 Linux 1 Linux Kernel 2025-09-22 7.1 High
In the Linux kernel, the following vulnerability has been resolved: remoteproc: Fix count check in rproc_coredump_write() Check count for 0, to avoid a potential underflow. Make the check the same as the one in rproc_recovery_write().
CVE-2022-49289 1 Linux 1 Linux Kernel 2025-09-22 7.1 High
In the Linux kernel, the following vulnerability has been resolved: uaccess: fix integer overflow on access_ok() Three architectures check the end of a user access against the address limit without taking a possible overflow into account. Passing a negative length or another overflow in here returns success when it should not. Use the most common correct implementation here, which optimizes for a constant 'size' argument, and turns the common case into a single comparison.
CVE-2024-53880 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Triton Inference Server 2025-09-22 4.9 Medium
NVIDIA Triton Inference Server contains a vulnerability in the model loading API, where a user could cause an integer overflow or wraparound error by loading a model with an extra-large file size that overflows an internal variable. A successful exploit of this vulnerability might lead to denial of service.
CVE-2025-58749 1 Bytecodealliance 1 Webassembly Micro Runtime 2025-09-20 5.3 Medium
WebAssembly Micro Runtime (WAMR) is a lightweight standalone WebAssembly (Wasm) runtime. In WAMR versions prior to 2.4.2, when running in LLVM-JIT mode, the runtime cannot exit normally when executing WebAssembly programs containing a memory.fill instruction where the first operand (memory address pointer) is greater than or equal to 2147483648 bytes (2GiB). This causes the runtime to hang in release builds or crash in debug builds due to accessing an invalid pointer. The issue does not occur in FAST-JIT mode or other runtime tools. This has been fixed in version 2.4.2.
CVE-2025-55068 1 Doverfuelingsolutions 1 Progauge Maglink Lx Console 2025-09-19 8.2 High
Dover Fueling Solutions ProGauge MagLink LX4 Devices fail to handle Unix time values beyond a certain point. An attacker can manually change the system time to exploit this limitation, potentially causing errors in authentication and leading to a denial-of-service condition.