| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure snd_nxt is properly initialized on connect
Christoph reported a splat hinting at a corrupted snd_una:
WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Modules linked in:
CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8
8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe
<0f> 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9
RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4
RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000
R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000
FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0
Call Trace:
<TASK>
__mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline]
mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline]
__mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615
mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767
process_one_work+0x1e0/0x560 kernel/workqueue.c:3254
process_scheduled_works kernel/workqueue.c:3335 [inline]
worker_thread+0x3c7/0x640 kernel/workqueue.c:3416
kthread+0x121/0x170 kernel/kthread.c:388
ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
</TASK>
When fallback to TCP happens early on a client socket, snd_nxt
is not yet initialized and any incoming ack will copy such value
into snd_una. If the mptcp worker (dumbly) tries mptcp-level
re-injection after such ack, that would unconditionally trigger a send
buffer cleanup using 'bad' snd_una values.
We could easily disable re-injection for fallback sockets, but such
dumb behavior already helped catching a few subtle issues and a very
low to zero impact in practice.
Instead address the issue always initializing snd_nxt (and write_seq,
for consistency) at connect time. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs: Handle error of rpc_proc_register() in nfs_net_init().
syzkaller reported a warning [0] triggered while destroying immature
netns.
rpc_proc_register() was called in init_nfs_fs(), but its error
has been ignored since at least the initial commit 1da177e4c3f4
("Linux-2.6.12-rc2").
Recently, commit d47151b79e32 ("nfs: expose /proc/net/sunrpc/nfs
in net namespaces") converted the procfs to per-netns and made
the problem more visible.
Even when rpc_proc_register() fails, nfs_net_init() could succeed,
and thus nfs_net_exit() will be called while destroying the netns.
Then, remove_proc_entry() will be called for non-existing proc
directory and trigger the warning below.
Let's handle the error of rpc_proc_register() properly in nfs_net_init().
[0]:
name 'nfs'
WARNING: CPU: 1 PID: 1710 at fs/proc/generic.c:711 remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Modules linked in:
CPU: 1 PID: 1710 Comm: syz-executor.2 Not tainted 6.8.0-12822-gcd51db110a7e #12
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Code: 41 5d 41 5e c3 e8 85 09 b5 ff 48 c7 c7 88 58 64 86 e8 09 0e 71 02 e8 74 09 b5 ff 4c 89 e6 48 c7 c7 de 1b 80 84 e8 c5 ad 97 ff <0f> 0b eb b1 e8 5c 09 b5 ff 48 c7 c7 88 58 64 86 e8 e0 0d 71 02 eb
RSP: 0018:ffffc9000c6d7ce0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff8880422b8b00 RCX: ffffffff8110503c
RDX: ffff888030652f00 RSI: ffffffff81105045 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: ffffffff81bb62cb R12: ffffffff84807ffc
R13: ffff88804ad6fcc0 R14: ffffffff84807ffc R15: ffffffff85741ff8
FS: 00007f30cfba8640(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff51afe8000 CR3: 000000005a60a005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
rpc_proc_unregister+0x64/0x70 net/sunrpc/stats.c:310
nfs_net_exit+0x1c/0x30 fs/nfs/inode.c:2438
ops_exit_list+0x62/0xb0 net/core/net_namespace.c:170
setup_net+0x46c/0x660 net/core/net_namespace.c:372
copy_net_ns+0x244/0x590 net/core/net_namespace.c:505
create_new_namespaces+0x2ed/0x770 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xae/0x160 kernel/nsproxy.c:228
ksys_unshare+0x342/0x760 kernel/fork.c:3322
__do_sys_unshare kernel/fork.c:3393 [inline]
__se_sys_unshare kernel/fork.c:3391 [inline]
__x64_sys_unshare+0x1f/0x30 kernel/fork.c:3391
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0x7f30d0febe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f30cfba7cc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f30d0febe5d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000000006c020600
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
R13: 000000000000000b R14: 00007f30d104c530 R15: 0000000000000000
</TASK> |
| runc through 1.1.4 has Incorrect Access Control leading to Escalation of Privileges, related to libcontainer/rootfs_linux.go. To exploit this, an attacker must be able to spawn two containers with custom volume-mount configurations, and be able to run custom images. NOTE: this issue exists because of a CVE-2019-19921 regression. |
| A flaw was found in Keycloak. An IDOR (Broken Access Control) vulnerability exists in the admin API endpoints for authorization resource management, specifically in ResourceSetService and PermissionTicketService. The system checks authorization against the resourceServer (client) ID provided in the API request, but the backend database lookup and modification operations (findById, delete) only use the resourceId. This mismatch allows an authenticated attacker with fine-grained admin permissions for one client (e.g., Client A) to delete or update resources belonging to another client (Client B) within the same realm by supplying a valid resource ID. |
| The reference count changes made as part of the CVE-2023-33951 and CVE-2023-33952 fixes exposed a use-after-free flaw in the way memory objects were handled when they were being used to store a surface. When running inside a VMware guest with 3D acceleration enabled, a local, unprivileged user could potentially use this flaw to escalate their privileges. |
| Authorization Bypass Through User-Controlled Key in NPM url-parse prior to 1.5.7. |
| Flatpak is a system for building, distributing, and running sandboxed desktop applications on Linux. in versions before 1.10.9, 1.12.9, 1.14.6, and 1.15.8, a malicious or compromised Flatpak app could execute arbitrary code outside its sandbox. Normally, the `--command` argument of `flatpak run` expects to be given a command to run in the specified Flatpak app, optionally along with some arguments. However it is possible to instead pass `bwrap` arguments to `--command=`, such as `--bind`. It's possible to pass an arbitrary `commandline` to the portal interface `org.freedesktop.portal.Background.RequestBackground` from within a Flatpak app. When this is converted into a `--command` and arguments, it achieves the same effect of passing arguments directly to `bwrap`, and thus can be used for a sandbox escape. The solution is to pass the `--` argument to `bwrap`, which makes it stop processing options. This has been supported since bubblewrap 0.3.0. All supported versions of Flatpak require at least that version of bubblewrap. xdg-desktop-portal version 1.18.4 will mitigate this vulnerability by only allowing Flatpak apps to create .desktop files for commands that do not start with --. The vulnerability is patched in 1.15.8, 1.10.9, 1.12.9, and 1.14.6. |
| Git for Windows is a fork of Git containing Windows-specific patches. This vulnerability affects users working on multi-user machines, where untrusted parties have write access to the same hard disk. Those untrusted parties could create the folder `C:\.git`, which would be picked up by Git operations run supposedly outside a repository while searching for a Git directory. Git would then respect any config in said Git directory. Git Bash users who set `GIT_PS1_SHOWDIRTYSTATE` are vulnerable as well. Users who installed posh-gitare vulnerable simply by starting a PowerShell. Users of IDEs such as Visual Studio are vulnerable: simply creating a new project would already read and respect the config specified in `C:\.git\config`. Users of the Microsoft fork of Git are vulnerable simply by starting a Git Bash. The problem has been patched in Git for Windows v2.35.2. Users unable to upgrade may create the folder `.git` on all drives where Git commands are run, and remove read/write access from those folders as a workaround. Alternatively, define or extend `GIT_CEILING_DIRECTORIES` to cover the _parent_ directory of the user profile, e.g. `C:\Users` if the user profile is located in `C:\Users\my-user-name`. |
| node-tar is a Tar for Node.js. node-tar prior to version 6.2.1 has no limit on the number of sub-folders created in the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running node-tar and even crash the Node.js client within few seconds of running it using a path with too many sub-folders inside. Version 6.2.1 fixes this issue by preventing extraction in excessively deep sub-folders. |
| In Paramiko before 2.10.1, a race condition (between creation and chmod) in the write_private_key_file function could allow unauthorized information disclosure. |
| Prior to versions 7.1.0, 6.1.2, and 5.3.4, the webpack-dev-middleware development middleware for devpack does not validate the supplied URL address sufficiently before returning the local file. It is possible to access any file on the developer's machine. The middleware can either work with the physical filesystem when reading the files or it can use a virtualized in-memory `memfs` filesystem. If `writeToDisk` configuration option is set to `true`, the physical filesystem is used. The `getFilenameFromUrl` method is used to parse URL and build the local file path. The public path prefix is stripped from the URL, and the `unsecaped` path suffix is appended to the `outputPath`. As the URL is not unescaped and normalized automatically before calling the midlleware, it is possible to use `%2e` and `%2f` sequences to perform path traversal attack.
Developers using `webpack-dev-server` or `webpack-dev-middleware` are affected by the issue. When the project is started, an attacker might access any file on the developer's machine and exfiltrate the content. If the development server is listening on a public IP address (or `0.0.0.0`), an attacker on the local network can access the local files without any interaction from the victim (direct connection to the port). If the server allows access from third-party domains, an attacker can send a malicious link to the victim. When visited, the client side script can connect to the local server and exfiltrate the local files. Starting with fixed versions 7.1.0, 6.1.2, and 5.3.4, the URL is unescaped and normalized before any further processing. |
| A potential denial of service vulnerability is present in versions of Apache CXF before 3.5.10, 3.6.5 and 4.0.6. In some edge cases, the CachedOutputStream instances may not be closed and, if backed by temporary files, may fill up the file system (it applies to servers and clients). |
| A vulnerability was found in Red Hat OpenShift Jenkins. The bearer token is not obfuscated in the logs and potentially carries a high risk if those logs are centralized when collected. The token is typically valid for one year. This flaw allows a malicious user to jeopardize the environment if they have access to sensitive information. |
| A flaw was found in the X Record extension. The RecordSanityCheckRegisterClients function does not check for an integer overflow when computing request length, which allows a client to bypass length checks. |
| A flaw was found in the X server's request handling. Non-zero 'bytes to ignore' in a client's request can cause the server to skip processing another client's request, potentially leading to a denial of service. |
| A flaw was found in the XFIXES extension. The XFixesSetClientDisconnectMode handler does not validate the request length, allowing a client to read unintended memory from previous requests. |
| pgx is a PostgreSQL driver and toolkit for Go. Prior to version 4.18.2, SQL injection can occur when all of the following conditions are met: the non-default simple protocol is used; a placeholder for a numeric value must be immediately preceded by a minus; there must be a second placeholder for a string value after the first placeholder; both must be on the same line; and both parameter values must be user-controlled. The problem is resolved in v4.18.2. As a workaround, do not use the simple protocol or do not place a minus directly before a placeholder.
|
| A flaw was found in the RandR extension, where the RRChangeProviderProperty function does not properly validate input. This issue leads to an integer overflow when computing the total size to allocate. |
| A flaw was found in the X Rendering extension's handling of animated cursors. If a client provides no cursors, the server assumes at least one is present, leading to an out-of-bounds read and potential crash. |
| A flaw was found in the Big Requests extension. The request length is multiplied by 4 before checking against the maximum allowed size, potentially causing an integer overflow and bypassing the size check. |