| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| .NET and Visual Studio Remote Code Execution Vulnerability |
| c-ares is an asynchronous resolver library. Versions 1.32.3 through 1.34.5 terminate a query after maximum attempts when using read_answer() and process_answer(), which can cause a Denial of Service. This issue is fixed in version 1.34.6. |
| Race condition vulnerability in the audio module. Impact: Successful exploitation of this vulnerability may affect availability. |
| Pointer dangling vulnerability in the cjwindow module.
Impact: Successful exploitation of this vulnerability may affect function stability. |
| OpenEXR provides the specification and reference implementation of the EXR file format, an image storage format for the motion picture industry. In versions 3.2.0 through 3.2.4, 3.3.0 through 3.3.5, and 3.4.0 through 3.4.2, there is a use-after-free in PyObject_StealAttrString of pyOpenEXR_old.cpp. The legacy adapter defines PyObject_StealAttrString that calls PyObject_GetAttrString to obtain a new reference, immediately decrefs it, and returns the pointer. Callers then pass this dangling pointer to APIs like PyLong_AsLong/PyFloat_AsDouble, resulting in a use-after-free. This is invoked in multiple places (e.g., reading PixelType.v, Box2i, V2f, etc.) Versions 3.2.5, 3.3.6, and 3.4.3 fix the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in session logoff
The sess->user object can currently be in use by another thread, for
example if another connection has sent a session setup request to
bind to the session being free'd. The handler for that connection could
be in the smb2_sess_setup function which makes use of sess->user. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix UAF in ovl_dentry_update_reval by moving dput() in ovl_link_up
The issue was caused by dput(upper) being called before
ovl_dentry_update_reval(), while upper->d_flags was still
accessed in ovl_dentry_remote().
Move dput(upper) after its last use to prevent use-after-free.
BUG: KASAN: slab-use-after-free in ovl_dentry_remote fs/overlayfs/util.c:162 [inline]
BUG: KASAN: slab-use-after-free in ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
ovl_dentry_remote fs/overlayfs/util.c:162 [inline]
ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167
ovl_link_up fs/overlayfs/copy_up.c:610 [inline]
ovl_copy_up_one+0x2105/0x3490 fs/overlayfs/copy_up.c:1170
ovl_copy_up_flags+0x18d/0x200 fs/overlayfs/copy_up.c:1223
ovl_rename+0x39e/0x18c0 fs/overlayfs/dir.c:1136
vfs_rename+0xf84/0x20a0 fs/namei.c:4893
...
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7921: fix crash when startup fails.
If the nic fails to start, it is possible that the
reset_work has already been scheduled. Ensure the
work item is canceled so we do not have use-after-free
crash in case cleanup is called before the work item
is executed.
This fixes crash on my x86_64 apu2 when mt7921k radio
fails to work. Radio still fails, but OS does not
crash. |
| A use after free memory corruption issue exists in Yandex Browser for Desktop prior to version 24.4.0.682 |
| An authorized user may crash the MongoDB server by causing buffer over-read. This can be done by issuing a DDL operation while queries are being issued, under some conditions. This issue affects MongoDB Server v7.0 versions prior to 7.0.25, MongoDB Server v8.0 versions prior to 8.0.15, and MongoDB Server version 8.2.0. |
| Use after free in Digital Credentials in Google Chrome prior to 143.0.7499.41 allowed a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| Use after free in Media Stream in Google Chrome prior to 143.0.7499.41 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Low) |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: core: add missing of_node_get() in dynamic partitions code
This fixes unbalanced of_node_put():
[ 1.078910] 6 cmdlinepart partitions found on MTD device gpmi-nand
[ 1.085116] Creating 6 MTD partitions on "gpmi-nand":
[ 1.090181] 0x000000000000-0x000008000000 : "nandboot"
[ 1.096952] 0x000008000000-0x000009000000 : "nandfit"
[ 1.103547] 0x000009000000-0x00000b000000 : "nandkernel"
[ 1.110317] 0x00000b000000-0x00000c000000 : "nanddtb"
[ 1.115525] ------------[ cut here ]------------
[ 1.120141] refcount_t: addition on 0; use-after-free.
[ 1.125328] WARNING: CPU: 0 PID: 1 at lib/refcount.c:25 refcount_warn_saturate+0xdc/0x148
[ 1.133528] Modules linked in:
[ 1.136589] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc7-next-20220930-04543-g8cf3f7
[ 1.146342] Hardware name: Freescale i.MX8DXL DDR3L EVK (DT)
[ 1.151999] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1.158965] pc : refcount_warn_saturate+0xdc/0x148
[ 1.163760] lr : refcount_warn_saturate+0xdc/0x148
[ 1.168556] sp : ffff800009ddb080
[ 1.171866] x29: ffff800009ddb080 x28: ffff800009ddb35a x27: 0000000000000002
[ 1.179015] x26: ffff8000098b06ad x25: ffffffffffffffff x24: ffff0a00ffffff05
[ 1.186165] x23: ffff00001fdf6470 x22: ffff800009ddb367 x21: 0000000000000000
[ 1.193314] x20: ffff00001fdfebe8 x19: ffff00001fdfec50 x18: ffffffffffffffff
[ 1.200464] x17: 0000000000000000 x16: 0000000000000118 x15: 0000000000000004
[ 1.207614] x14: 0000000000000fff x13: ffff800009bca248 x12: 0000000000000003
[ 1.214764] x11: 00000000ffffefff x10: c0000000ffffefff x9 : 4762cb2ccb52de00
[ 1.221914] x8 : 4762cb2ccb52de00 x7 : 205d313431303231 x6 : 312e31202020205b
[ 1.229063] x5 : ffff800009d55c1f x4 : 0000000000000001 x3 : 0000000000000000
[ 1.236213] x2 : 0000000000000000 x1 : ffff800009954be6 x0 : 000000000000002a
[ 1.243365] Call trace:
[ 1.245806] refcount_warn_saturate+0xdc/0x148
[ 1.250253] kobject_get+0x98/0x9c
[ 1.253658] of_node_get+0x20/0x34
[ 1.257072] of_fwnode_get+0x3c/0x54
[ 1.260652] fwnode_get_nth_parent+0xd8/0xf4
[ 1.264926] fwnode_full_name_string+0x3c/0xb4
[ 1.269373] device_node_string+0x498/0x5b4
[ 1.273561] pointer+0x41c/0x5d0
[ 1.276793] vsnprintf+0x4d8/0x694
[ 1.280198] vprintk_store+0x164/0x528
[ 1.283951] vprintk_emit+0x98/0x164
[ 1.287530] vprintk_default+0x44/0x6c
[ 1.291284] vprintk+0xf0/0x134
[ 1.294428] _printk+0x54/0x7c
[ 1.297486] of_node_release+0xe8/0x128
[ 1.301326] kobject_put+0x98/0xfc
[ 1.304732] of_node_put+0x1c/0x28
[ 1.308137] add_mtd_device+0x484/0x6d4
[ 1.311977] add_mtd_partitions+0xf0/0x1d0
[ 1.316078] parse_mtd_partitions+0x45c/0x518
[ 1.320439] mtd_device_parse_register+0xb0/0x274
[ 1.325147] gpmi_nand_probe+0x51c/0x650
[ 1.329074] platform_probe+0xa8/0xd0
[ 1.332740] really_probe+0x130/0x334
[ 1.336406] __driver_probe_device+0xb4/0xe0
[ 1.340681] driver_probe_device+0x3c/0x1f8
[ 1.344869] __driver_attach+0xdc/0x1a4
[ 1.348708] bus_for_each_dev+0x80/0xcc
[ 1.352548] driver_attach+0x24/0x30
[ 1.356127] bus_add_driver+0x108/0x1f4
[ 1.359967] driver_register+0x78/0x114
[ 1.363807] __platform_driver_register+0x24/0x30
[ 1.368515] gpmi_nand_driver_init+0x1c/0x28
[ 1.372798] do_one_initcall+0xbc/0x238
[ 1.376638] do_initcall_level+0x94/0xb4
[ 1.380565] do_initcalls+0x54/0x94
[ 1.384058] do_basic_setup+0x1c/0x28
[ 1.387724] kernel_init_freeable+0x110/0x188
[ 1.392084] kernel_init+0x20/0x1a0
[ 1.395578] ret_from_fork+0x10/0x20
[ 1.399157] ---[ end trace 0000000000000000 ]---
[ 1.403782] ------------[ cut here ]------------ |
| Mio is a Metal I/O library for Rust. When using named pipes on Windows, mio will under some circumstances return invalid tokens that correspond to named pipes that have already been deregistered from the mio registry. The impact of this vulnerability depends on how mio is used. For some applications, invalid tokens may be ignored or cause a warning or a crash. On the other hand, for applications that store pointers in the tokens, this vulnerability may result in a use-after-free. For users of Tokio, this vulnerability is serious and can result in a use-after-free in Tokio. The vulnerability is Windows-specific, and can only happen if you are using named pipes. Other IO resources are not affected. This vulnerability has been fixed in mio v0.8.11. All versions of mio between v0.7.2 and v0.8.10 are vulnerable. Tokio is vulnerable when you are using a vulnerable version of mio AND you are using at least Tokio v1.30.0. Versions of Tokio prior to v1.30.0 will ignore invalid tokens, so they are not vulnerable. Vulnerable libraries that use mio can work around this issue by detecting and ignoring invalid tokens. |
| Use-after-free vulnerability in libxml2 through 2.9.4, as used in Google Chrome before 52.0.2743.82, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to the XPointer range-to function. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix extent map use-after-free when handling missing device in read_one_chunk
Store the error code before freeing the extent_map. Though it's
reference counted structure, in that function it's the first and last
allocation so this would lead to a potential use-after-free.
The error can happen eg. when chunk is stored on a missing device and
the degraded mount option is missing.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: sof_es8336: fix possible use-after-free in sof_es8336_remove()
sof_es8336_remove() calls cancel_delayed_work(). However, that
function does not wait until the work function finishes. This
means that the callback function may still be running after
the driver's remove function has finished, which would result
in a use-after-free.
Fix by calling cancel_delayed_work_sync(), which ensures that
the work is properly cancelled, no longer running, and unable
to re-schedule itself. |
| A vulnerability has been found in mruby up to 3.4.0. This vulnerability affects the function sort_cmp of the file src/array.c. Such manipulation leads to use after free. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is eb398971bfb43c38db3e04528b68ac9a7ce509bc. It is advisable to implement a patch to correct this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed
If the initialization fails in calling addrconf_init_net(), devconf_all is
the pointer that has been released. Then ip6mr_sk_done() is called to
release the net, accessing devconf->mc_forwarding directly causes invalid
pointer access.
The process is as follows:
setup_net()
ops_init()
addrconf_init_net()
all = kmemdup(...) ---> alloc "all"
...
net->ipv6.devconf_all = all;
__addrconf_sysctl_register() ---> failed
...
kfree(all); ---> ipv6.devconf_all invalid
...
ops_exit_list()
...
ip6mr_sk_done()
devconf = net->ipv6.devconf_all;
//devconf is invalid pointer
if (!devconf || !atomic_read(&devconf->mc_forwarding))
The following is the Call Trace information:
BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0
Read of size 4 at addr ffff888075508e88 by task ip/14554
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
print_report+0x155/0x454
kasan_report+0xba/0x1f0
kasan_check_range+0x35/0x1b0
ip6mr_sk_done+0x112/0x3a0
rawv6_close+0x48/0x70
inet_release+0x109/0x230
inet6_release+0x4c/0x70
sock_release+0x87/0x1b0
igmp6_net_exit+0x6b/0x170
ops_exit_list+0xb0/0x170
setup_net+0x7ac/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f7963322547
</TASK>
Allocated by task 14554:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0xa1/0xb0
__kmalloc_node_track_caller+0x4a/0xb0
kmemdup+0x28/0x60
addrconf_init_net+0x1be/0x840
ops_init+0xa5/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 14554:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x155/0x1b0
slab_free_freelist_hook+0x11b/0x220
__kmem_cache_free+0xa4/0x360
addrconf_init_net+0x623/0x840
ops_init+0xa5/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix uaf for bfqq in bfq_exit_icq_bfqq
Commit 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'")
will access 'bic->bfqq' in bic_set_bfqq(), however, bfq_exit_icq_bfqq()
can free bfqq first, and then call bic_set_bfqq(), which will cause uaf.
Fix the problem by moving bfq_exit_bfqq() behind bic_set_bfqq(). |