| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: check changes_pkt_data property for extension programs
When processing calls to global sub-programs, verifier decides whether
to invalidate all packet pointers in current state depending on the
changes_pkt_data property of the global sub-program.
Because of this, an extension program replacing a global sub-program
must be compatible with changes_pkt_data property of the sub-program
being replaced.
This commit:
- adds changes_pkt_data flag to struct bpf_prog_aux:
- this flag is set in check_cfg() for main sub-program;
- in jit_subprogs() for other sub-programs;
- modifies bpf_check_attach_btf_id() to check changes_pkt_data flag;
- moves call to check_attach_btf_id() after the call to check_cfg(),
because it needs changes_pkt_data flag to be set:
bpf_check:
... ...
- check_attach_btf_id resolve_pseudo_ldimm64
resolve_pseudo_ldimm64 --> bpf_prog_is_offloaded
bpf_prog_is_offloaded check_cfg
check_cfg + check_attach_btf_id
... ...
The following fields are set by check_attach_btf_id():
- env->ops
- prog->aux->attach_btf_trace
- prog->aux->attach_func_name
- prog->aux->attach_func_proto
- prog->aux->dst_trampoline
- prog->aux->mod
- prog->aux->saved_dst_attach_type
- prog->aux->saved_dst_prog_type
- prog->expected_attach_type
Neither of these fields are used by resolve_pseudo_ldimm64() or
bpf_prog_offload_verifier_prep() (for netronome and netdevsim
drivers), so the reordering is safe. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: consider that tail calls invalidate packet pointers
Tail-called programs could execute any of the helpers that invalidate
packet pointers. Hence, conservatively assume that each tail call
invalidates packet pointers.
Making the change in bpf_helper_changes_pkt_data() automatically makes
use of check_cfg() logic that computes 'changes_pkt_data' effect for
global sub-programs, such that the following program could be
rejected:
int tail_call(struct __sk_buff *sk)
{
bpf_tail_call_static(sk, &jmp_table, 0);
return 0;
}
SEC("tc")
int not_safe(struct __sk_buff *sk)
{
int *p = (void *)(long)sk->data;
... make p valid ...
tail_call(sk);
*p = 42; /* this is unsafe */
...
}
The tc_bpf2bpf.c:subprog_tc() needs change: mark it as a function that
can invalidate packet pointers. Otherwise, it can't be freplaced with
tailcall_freplace.c:entry_freplace() that does a tail call. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: keep alloc_hash updated after hash allocation
In commit 599be01ee567 ("net_sched: fix an OOB access in cls_tcindex")
I moved cp->hash calculation before the first
tcindex_alloc_perfect_hash(), but cp->alloc_hash is left untouched.
This difference could lead to another out of bound access.
cp->alloc_hash should always be the size allocated, we should
update it after this tcindex_alloc_perfect_hash(). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Keep write operations atomic
syzbot reported a NULL pointer dereference in __generic_file_write_iter. [1]
Before the write operation is completed, the user executes ioctl[2] to clear
the compress flag of the file, which causes the is_compressed() judgment to
return 0, further causing the program to enter the wrong process and call the
wrong ops ntfs_aops_cmpr, which triggers the null pointer dereference of
write_begin.
Use inode lock to synchronize ioctl and write to avoid this case.
[1]
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Mem abort info:
ESR = 0x0000000086000006
EC = 0x21: IABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
user pgtable: 4k pages, 48-bit VAs, pgdp=000000011896d000
[0000000000000000] pgd=0800000118b44403, p4d=0800000118b44403, pud=0800000117517403, pmd=0000000000000000
Internal error: Oops: 0000000086000006 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 UID: 0 PID: 6427 Comm: syz-executor347 Not tainted 6.13.0-rc3-syzkaller-g573067a5a685 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : 0x0
lr : generic_perform_write+0x29c/0x868 mm/filemap.c:4055
sp : ffff80009d4978a0
x29: ffff80009d4979c0 x28: dfff800000000000 x27: ffff80009d497bc8
x26: 0000000000000000 x25: ffff80009d497960 x24: ffff80008ba71c68
x23: 0000000000000000 x22: ffff0000c655dac0 x21: 0000000000001000
x20: 000000000000000c x19: 1ffff00013a92f2c x18: ffff0000e183aa1c
x17: 0004060000000014 x16: ffff800083275834 x15: 0000000000000001
x14: 0000000000000000 x13: 0000000000000001 x12: ffff0000c655dac0
x11: 0000000000ff0100 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffff80009d497980 x4 : ffff80009d497960 x3 : 0000000000001000
x2 : 0000000000000000 x1 : ffff0000e183a928 x0 : ffff0000d60b0fc0
Call trace:
0x0 (P)
__generic_file_write_iter+0xfc/0x204 mm/filemap.c:4156
ntfs_file_write_iter+0x54c/0x630 fs/ntfs3/file.c:1267
new_sync_write fs/read_write.c:586 [inline]
vfs_write+0x920/0xcf4 fs/read_write.c:679
ksys_write+0x15c/0x26c fs/read_write.c:731
__do_sys_write fs/read_write.c:742 [inline]
__se_sys_write fs/read_write.c:739 [inline]
__arm64_sys_write+0x7c/0x90 fs/read_write.c:739
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:744
el0t_64_sync_handler+0x84/0x108 arch/arm64/kernel/entry-common.c:762
[2]
ioctl$FS_IOC_SETFLAGS(r0, 0x40086602, &(0x7f00000000c0)=0x20) |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: null - Use spin lock instead of mutex
As the null algorithm may be freed in softirq context through
af_alg, use spin locks instead of mutexes to protect the default
null algorithm. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: hfsc: Fix a potential UAF in hfsc_dequeue() too
Similarly to the previous patch, we need to safe guard hfsc_dequeue()
too. But for this one, we don't have a reliable reproducer. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix NULL pointer dereference in tipc_mon_reinit_self()
syzbot reported:
tipc: Node number set to 1055423674
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 3 UID: 0 PID: 6017 Comm: kworker/3:5 Not tainted 6.15.0-rc1-syzkaller-00246-g900241a5cc15 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events tipc_net_finalize_work
RIP: 0010:tipc_mon_reinit_self+0x11c/0x210 net/tipc/monitor.c:719
...
RSP: 0018:ffffc9000356fb68 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000003ee87cba
RDX: 0000000000000000 RSI: ffffffff8dbc56a7 RDI: ffff88804c2cc010
RBP: dffffc0000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000007
R13: fffffbfff2111097 R14: ffff88804ead8000 R15: ffff88804ead9010
FS: 0000000000000000(0000) GS:ffff888097ab9000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000f720eb00 CR3: 000000000e182000 CR4: 0000000000352ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tipc_net_finalize+0x10b/0x180 net/tipc/net.c:140
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
...
RIP: 0010:tipc_mon_reinit_self+0x11c/0x210 net/tipc/monitor.c:719
...
RSP: 0018:ffffc9000356fb68 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000003ee87cba
RDX: 0000000000000000 RSI: ffffffff8dbc56a7 RDI: ffff88804c2cc010
RBP: dffffc0000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000007
R13: fffffbfff2111097 R14: ffff88804ead8000 R15: ffff88804ead9010
FS: 0000000000000000(0000) GS:ffff888097ab9000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000f720eb00 CR3: 000000000e182000 CR4: 0000000000352ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
There is a racing condition between workqueue created when enabling
bearer and another thread created when disabling bearer right after
that as follow:
enabling_bearer | disabling_bearer
--------------- | ----------------
tipc_disc_timeout() |
{ | bearer_disable()
... | {
schedule_work(&tn->work); | tipc_mon_delete()
... | {
} | ...
| write_lock_bh(&mon->lock);
| mon->self = NULL;
| write_unlock_bh(&mon->lock);
| ...
| }
tipc_net_finalize_work() | }
{ |
... |
tipc_net_finalize() |
{ |
... |
tipc_mon_reinit_self() |
{ |
... |
write_lock_bh(&mon->lock); |
mon->self->addr = tipc_own_addr(net); |
write_unlock_bh(&mon->lock); |
...
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix out-of-bounds access in nvmet_enable_port
When trying to enable a port that has no transport configured yet,
nvmet_enable_port() uses NVMF_TRTYPE_MAX (255) to query the transports
array, causing an out-of-bounds access:
[ 106.058694] BUG: KASAN: global-out-of-bounds in nvmet_enable_port+0x42/0x1da
[ 106.058719] Read of size 8 at addr ffffffff89dafa58 by task ln/632
[...]
[ 106.076026] nvmet: transport type 255 not supported
Since commit 200adac75888, NVMF_TRTYPE_MAX is the default state as configured by
nvmet_ports_make().
Avoid this by checking for NVMF_TRTYPE_MAX before proceeding. |
| A flaw was found in the IPv4 Resource Reservation Protocol (RSVP) classifier in the Linux kernel. The xprt pointer may go beyond the linear part of the skb, leading to an out-of-bounds read in the `rsvp_classify` function. This issue may allow a local user to crash the system and cause a denial of service. |
| A flaw was found in the Netfilter subsystem in the Linux kernel. The xt_u32 module did not validate the fields in the xt_u32 structure. This flaw allows a local privileged attacker to trigger an out-of-bounds read by setting the size fields with a value beyond the array boundaries, leading to a crash or information disclosure. |
| An out-of-bounds read vulnerability was found in smb2_dump_detail in fs/smb/client/smb2ops.c in the Linux Kernel. This issue could allow a local attacker to crash the system or leak internal kernel information. |
| An out-of-bounds read vulnerability was found in smbCalcSize in fs/smb/client/netmisc.c in the Linux Kernel. This issue could allow a local attacker to crash the system or leak internal kernel information. |
| A Marvin vulnerability side-channel leakage was found in the RSA decryption operation in the Linux Kernel. This issue may allow a network attacker to decrypt ciphertexts or forge signatures, limiting the services that use that private key. |
| A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition. |
| A use-after-free flaw was found in the Linux kernel's netfilter in the way a user triggers the nft_pipapo_remove function with the element, without a NFT_SET_EXT_KEY_END. This issue could allow a local user to crash the system or potentially escalate their privileges on the system. |
| In the Linux kernel, the following vulnerability has been resolved:
net/x25: Fix skb leak in x25_lapb_receive_frame()
x25_lapb_receive_frame() using skb_copy() to get a private copy of
skb, the new skb should be freed in the undersized/fragmented skb
error handling path. Otherwise there is a memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix memory leak in tracing_read_pipe()
kmemleak reports this issue:
unreferenced object 0xffff888105a18900 (size 128):
comm "test_progs", pid 18933, jiffies 4336275356 (age 22801.766s)
hex dump (first 32 bytes):
25 73 00 90 81 88 ff ff 26 05 00 00 42 01 58 04 %s......&...B.X.
03 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000560143a1>] __kmalloc_node_track_caller+0x4a/0x140
[<000000006af00822>] krealloc+0x8d/0xf0
[<00000000c309be6a>] trace_iter_expand_format+0x99/0x150
[<000000005a53bdb6>] trace_check_vprintf+0x1e0/0x11d0
[<0000000065629d9d>] trace_event_printf+0xb6/0xf0
[<000000009a690dc7>] trace_raw_output_bpf_trace_printk+0x89/0xc0
[<00000000d22db172>] print_trace_line+0x73c/0x1480
[<00000000cdba76ba>] tracing_read_pipe+0x45c/0x9f0
[<0000000015b58459>] vfs_read+0x17b/0x7c0
[<000000004aeee8ed>] ksys_read+0xed/0x1c0
[<0000000063d3d898>] do_syscall_64+0x3b/0x90
[<00000000a06dda7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
iter->fmt alloced in
tracing_read_pipe() -> .. ->trace_iter_expand_format(), but not
freed, to fix, add free in tracing_release_pipe() |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix memory leak in test_gen_synth_cmd() and test_empty_synth_event()
test_gen_synth_cmd() only free buf in fail path, hence buf will leak
when there is no failure. Add kfree(buf) to prevent the memleak. The
same reason and solution in test_empty_synth_event().
unreferenced object 0xffff8881127de000 (size 2048):
comm "modprobe", pid 247, jiffies 4294972316 (age 78.756s)
hex dump (first 32 bytes):
20 67 65 6e 5f 73 79 6e 74 68 5f 74 65 73 74 20 gen_synth_test
20 70 69 64 5f 74 20 6e 65 78 74 5f 70 69 64 5f pid_t next_pid_
backtrace:
[<000000004254801a>] kmalloc_trace+0x26/0x100
[<0000000039eb1cf5>] 0xffffffffa00083cd
[<000000000e8c3bc8>] 0xffffffffa00086ba
[<00000000c293d1ea>] do_one_initcall+0xdb/0x480
[<00000000aa189e6d>] do_init_module+0x1cf/0x680
[<00000000d513222b>] load_module+0x6a50/0x70a0
[<000000001fd4d529>] __do_sys_finit_module+0x12f/0x1c0
[<00000000b36c4c0f>] do_syscall_64+0x3f/0x90
[<00000000bbf20cf3>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
unreferenced object 0xffff8881127df000 (size 2048):
comm "modprobe", pid 247, jiffies 4294972324 (age 78.728s)
hex dump (first 32 bytes):
20 65 6d 70 74 79 5f 73 79 6e 74 68 5f 74 65 73 empty_synth_tes
74 20 20 70 69 64 5f 74 20 6e 65 78 74 5f 70 69 t pid_t next_pi
backtrace:
[<000000004254801a>] kmalloc_trace+0x26/0x100
[<00000000d4db9a3d>] 0xffffffffa0008071
[<00000000c31354a5>] 0xffffffffa00086ce
[<00000000c293d1ea>] do_one_initcall+0xdb/0x480
[<00000000aa189e6d>] do_init_module+0x1cf/0x680
[<00000000d513222b>] load_module+0x6a50/0x70a0
[<000000001fd4d529>] __do_sys_finit_module+0x12f/0x1c0
[<00000000b36c4c0f>] do_syscall_64+0x3f/0x90
[<00000000bbf20cf3>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix wild-memory-access in register_synth_event()
In register_synth_event(), if set_synth_event_print_fmt() failed, then
both trace_remove_event_call() and unregister_trace_event() will be
called, which means the trace_event_call will call
__unregister_trace_event() twice. As the result, the second unregister
will causes the wild-memory-access.
register_synth_event
set_synth_event_print_fmt failed
trace_remove_event_call
event_remove
if call->event.funcs then
__unregister_trace_event (first call)
unregister_trace_event
__unregister_trace_event (second call)
Fix the bug by avoiding to call the second __unregister_trace_event() by
checking if the first one is called.
general protection fault, probably for non-canonical address
0xfbd59c0000000024: 0000 [#1] SMP KASAN PTI
KASAN: maybe wild-memory-access in range
[0xdead000000000120-0xdead000000000127]
CPU: 0 PID: 3807 Comm: modprobe Not tainted
6.1.0-rc1-00186-g76f33a7eedb4 #299
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:unregister_trace_event+0x6e/0x280
Code: 00 fc ff df 4c 89 ea 48 c1 ea 03 80 3c 02 00 0f 85 0e 02 00 00 48
b8 00 00 00 00 00 fc ff df 4c 8b 63 08 4c 89 e2 48 c1 ea 03 <80> 3c 02
00 0f 85 e2 01 00 00 49 89 2c 24 48 85 ed 74 28 e8 7a 9b
RSP: 0018:ffff88810413f370 EFLAGS: 00010a06
RAX: dffffc0000000000 RBX: ffff888105d050b0 RCX: 0000000000000000
RDX: 1bd5a00000000024 RSI: ffff888119e276e0 RDI: ffffffff835a8b20
RBP: dead000000000100 R08: 0000000000000000 R09: fffffbfff0913481
R10: ffffffff8489a407 R11: fffffbfff0913480 R12: dead000000000122
R13: ffff888105d050b8 R14: 0000000000000000 R15: ffff888105d05028
FS: 00007f7823e8d540(0000) GS:ffff888119e00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7823e7ebec CR3: 000000010a058002 CR4: 0000000000330ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__create_synth_event+0x1e37/0x1eb0
create_or_delete_synth_event+0x110/0x250
synth_event_run_command+0x2f/0x110
test_gen_synth_cmd+0x170/0x2eb [synth_event_gen_test]
synth_event_gen_test_init+0x76/0x9bc [synth_event_gen_test]
do_one_initcall+0xdb/0x480
do_init_module+0x1cf/0x680
load_module+0x6a50/0x70a0
__do_sys_finit_module+0x12f/0x1c0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix race where eprobes can be called before the event
The flag that tells the event to call its triggers after reading the event
is set for eprobes after the eprobe is enabled. This leads to a race where
the eprobe may be triggered at the beginning of the event where the record
information is NULL. The eprobe then dereferences the NULL record causing
a NULL kernel pointer bug.
Test for a NULL record to keep this from happening. |