| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Embedded Jopr component in JBoss Application Server includes the cleartext datasource password in unspecified HTML responses, which might allow (1) man-in-the-middle attackers to obtain sensitive information by leveraging failure to use SSL or (2) attackers to obtain sensitive information by reading the HTML source code. NOTE: the vendor says that this does not cross a trust boundary and that it is recommended best-practice that SSL is configured for the administrative console |
| Adobe Flash Player versions 25.0.0.171 and earlier have an exploitable use after free vulnerability in the Primetime SDK functionality related to the profile metadata of the media stream. Successful exploitation could lead to arbitrary code execution. |
| Adobe Flash Player versions 26.0.0.131 and earlier have an exploitable memory corruption vulnerability in the Action Script 2 BitmapData class. Successful exploitation could lead to memory address disclosure. |
| An issue was discovered in Adobe Flash Player 27.0.0.183 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of AdobePSDK metadata. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. |
| An issue was discovered in Adobe Flash Player 27.0.0.183 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of providing language- and region- or country- specific functionality. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. |
| A use after free in IndexedDB in Google Chrome prior to 60.0.3112.78 for Linux, Android, Windows, and Mac allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. |
| A use after free in Blink in Google Chrome prior to 59.0.3071.104 for Mac, Windows, and Linux, and 59.0.3071.117 for Android, allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page, aka an IndexedDB sandbox escape. |
| Insufficient validation of untrusted input in V8 in Google Chrome prior to 59.0.3071.104 for Mac, Windows, and Linux, and 59.0.3071.117 for Android, allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. |
| Inappropriate implementation in Bookmarks in Google Chrome prior to 59 for iOS allowed a remote attacker who convinced the user to perform certain operations to run JavaScript on chrome:// pages via a crafted bookmark. |
| When using the Index Replication feature, Apache Solr nodes can pull index files from a master/leader node using an HTTP API which accepts a file name. However, Solr before 5.5.4 and 6.x before 6.4.1 did not validate the file name, hence it was possible to craft a special request involving path traversal, leaving any file readable to the Solr server process exposed. Solr servers protected and restricted by firewall rules and/or authentication would not be at risk since only trusted clients and users would gain direct HTTP access. |
| Inappropriate implementation in Blink in Google Chrome prior to 59.0.3071.86 for Mac, Windows, and Linux, and 59.0.3071.92 for Android, allowed a remote attacker to display UI on a non attacker controlled tab via a crafted HTML page. |
| Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: RMI). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112; Java SE Embedded: 8u111; JRockit: R28.3.12. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. While the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS v3.0 Base Score 9.0 (Confidentiality, Integrity and Availability impacts). |
| Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: 2D). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112; Java SE Embedded: 8u111; JRockit: R28.3.12. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS v3.0 Base Score 7.5 (Availability impacts). |
| Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: Replication). Supported versions that are affected are 5.7.16 and earlier. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS v3.0 Base Score 6.5 (Availability impacts). |
| Vulnerability in the Java SE component of Oracle Java SE (subcomponent: Deployment). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS v3.0 Base Score 3.7 (Confidentiality impacts). |
| Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: DDL). Supported versions that are affected are 5.5.53 and earlier, 5.6.34 and earlier and 5.7.16 and earlier. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS v3.0 Base Score 6.5 (Availability impacts). |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112; Java SE Embedded: 8u111. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS v3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Hotspot). Supported versions that are affected are Java SE: 7u121 and 8u112; Java SE Embedded: 8u111. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS v3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). |
| Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: C API). Supported versions that are affected are 5.5.55 and earlier and 5.6.35 and earlier. Difficult to exploit vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all MySQL Server accessible data. CVSS 3.0 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N). NOTE: the previous information is from the April 2017 CPU. Oracle has not commented on third-party claims that this issue allows man-in-the-middle attackers to hijack the authentication of users by leveraging incorrect ordering of security parameter verification in a client, aka, "The Riddle". |
| Insufficient validation of untrusted input in Skia in Google Chrome prior to 59.0.3071.86 for Linux, Windows, and Mac, and 59.0.3071.92 for Android, allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. |