| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Get rid of userspace_irqchip_in_use
Improper use of userspace_irqchip_in_use led to syzbot hitting the
following WARN_ON() in kvm_timer_update_irq():
WARNING: CPU: 0 PID: 3281 at arch/arm64/kvm/arch_timer.c:459
kvm_timer_update_irq+0x21c/0x394
Call trace:
kvm_timer_update_irq+0x21c/0x394 arch/arm64/kvm/arch_timer.c:459
kvm_timer_vcpu_reset+0x158/0x684 arch/arm64/kvm/arch_timer.c:968
kvm_reset_vcpu+0x3b4/0x560 arch/arm64/kvm/reset.c:264
kvm_vcpu_set_target arch/arm64/kvm/arm.c:1553 [inline]
kvm_arch_vcpu_ioctl_vcpu_init arch/arm64/kvm/arm.c:1573 [inline]
kvm_arch_vcpu_ioctl+0x112c/0x1b3c arch/arm64/kvm/arm.c:1695
kvm_vcpu_ioctl+0x4ec/0xf74 virt/kvm/kvm_main.c:4658
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__arm64_sys_ioctl+0x108/0x184 fs/ioctl.c:893
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x78/0x1b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0xe8/0x1b0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x40/0x50 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x14c arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
The following sequence led to the scenario:
- Userspace creates a VM and a vCPU.
- The vCPU is initialized with KVM_ARM_VCPU_PMU_V3 during
KVM_ARM_VCPU_INIT.
- Without any other setup, such as vGIC or vPMU, userspace issues
KVM_RUN on the vCPU. Since the vPMU is requested, but not setup,
kvm_arm_pmu_v3_enable() fails in kvm_arch_vcpu_run_pid_change().
As a result, KVM_RUN returns after enabling the timer, but before
incrementing 'userspace_irqchip_in_use':
kvm_arch_vcpu_run_pid_change()
ret = kvm_arm_pmu_v3_enable()
if (!vcpu->arch.pmu.created)
return -EINVAL;
if (ret)
return ret;
[...]
if (!irqchip_in_kernel(kvm))
static_branch_inc(&userspace_irqchip_in_use);
- Userspace ignores the error and issues KVM_ARM_VCPU_INIT again.
Since the timer is already enabled, control moves through the
following flow, ultimately hitting the WARN_ON():
kvm_timer_vcpu_reset()
if (timer->enabled)
kvm_timer_update_irq()
if (!userspace_irqchip())
ret = kvm_vgic_inject_irq()
ret = vgic_lazy_init()
if (unlikely(!vgic_initialized(kvm)))
if (kvm->arch.vgic.vgic_model !=
KVM_DEV_TYPE_ARM_VGIC_V2)
return -EBUSY;
WARN_ON(ret);
Theoretically, since userspace_irqchip_in_use's functionality can be
simply replaced by '!irqchip_in_kernel()', get rid of the static key
to avoid the mismanagement, which also helps with the syzbot issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: defer partition scanning
We need to suppress the partition scan from occuring within the
controller's scan_work context. If a path error occurs here, the IO will
wait until a path becomes available or all paths are torn down, but that
action also occurs within scan_work, so it would deadlock. Defer the
partion scan to a different context that does not block scan_work. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: always initialize cqe.result
The spec doesn't mandate that the first two double words (aka results)
for the command queue entry need to be set to 0 when they are not
used (not specified). Though, the target implemention returns 0 for TCP
and FC but not for RDMA.
Let's make RDMA behave the same and thus explicitly initializing the
result field. This prevents leaking any data from the stack. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-fc: avoid deadlock on delete association path
When deleting an association the shutdown path is deadlocking because we
try to flush the nvmet_wq nested. Avoid this by deadlock by deferring
the put work into its own work item. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
Prior to LLVM 15.0.0, LLVM's integrated assembler would incorrectly
byte-swap NOP when compiling for big-endian, and the resulting series of
bytes happened to match the encoding of FNMADD S21, S30, S0, S0.
This went unnoticed until commit:
34f66c4c4d5518c1 ("arm64: Use a positive cpucap for FP/SIMD")
Prior to that commit, the kernel would always enable the use of FPSIMD
early in boot when __cpu_setup() initialized CPACR_EL1, and so usage of
FNMADD within the kernel was not detected, but could result in the
corruption of user or kernel FPSIMD state.
After that commit, the instructions happen to trap during boot prior to
FPSIMD being detected and enabled, e.g.
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x000000001fe00000 -- ASIMD
| CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.0-rc3-00013-g34f66c4c4d55 #1
| Hardware name: linux,dummy-virt (DT)
| pstate: 400000c9 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : __pi_strcmp+0x1c/0x150
| lr : populate_properties+0xe4/0x254
| sp : ffffd014173d3ad0
| x29: ffffd014173d3af0 x28: fffffbfffddffcb8 x27: 0000000000000000
| x26: 0000000000000058 x25: fffffbfffddfe054 x24: 0000000000000008
| x23: fffffbfffddfe000 x22: fffffbfffddfe000 x21: fffffbfffddfe044
| x20: ffffd014173d3b70 x19: 0000000000000001 x18: 0000000000000005
| x17: 0000000000000010 x16: 0000000000000000 x15: 00000000413e7000
| x14: 0000000000000000 x13: 0000000000001bcc x12: 0000000000000000
| x11: 00000000d00dfeed x10: ffffd414193f2cd0 x9 : 0000000000000000
| x8 : 0101010101010101 x7 : ffffffffffffffc0 x6 : 0000000000000000
| x5 : 0000000000000000 x4 : 0101010101010101 x3 : 000000000000002a
| x2 : 0000000000000001 x1 : ffffd014171f2988 x0 : fffffbfffddffcb8
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.0-rc3-00013-g34f66c4c4d55 #1
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0xec/0x108
| show_stack+0x18/0x2c
| dump_stack_lvl+0x50/0x68
| dump_stack+0x18/0x24
| panic+0x13c/0x340
| el1t_64_irq_handler+0x0/0x1c
| el1_abort+0x0/0x5c
| el1h_64_sync+0x64/0x68
| __pi_strcmp+0x1c/0x150
| unflatten_dt_nodes+0x1e8/0x2d8
| __unflatten_device_tree+0x5c/0x15c
| unflatten_device_tree+0x38/0x50
| setup_arch+0x164/0x1e0
| start_kernel+0x64/0x38c
| __primary_switched+0xbc/0xc4
Restrict CONFIG_CPU_BIG_ENDIAN to a known good assembler, which is
either GNU as or LLVM's IAS 15.0.0 and newer, which contains the linked
commit. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: errata: Add Cortex-A520 speculative unprivileged load workaround
Implement the workaround for ARM Cortex-A520 erratum 2966298. On an
affected Cortex-A520 core, a speculatively executed unprivileged load
might leak data from a privileged load via a cache side channel. The
issue only exists for loads within a translation regime with the same
translation (e.g. same ASID and VMID). Therefore, the issue only affects
the return to EL0.
The workaround is to execute a TLBI before returning to EL0 after all
loads of privileged data. A non-shareable TLBI to any address is
sufficient.
The workaround isn't necessary if page table isolation (KPTI) is
enabled, but for simplicity it will be. Page table isolation should
normally be disabled for Cortex-A520 as it supports the CSV3 feature
and the E0PD feature (used when KASLR is enabled). |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: compat: Do not treat syscall number as ESR_ELx for a bad syscall
If a compat process tries to execute an unknown system call above the
__ARM_NR_COMPAT_END number, the kernel sends a SIGILL signal to the
offending process. Information about the error is printed to dmesg in
compat_arm_syscall() -> arm64_notify_die() -> arm64_force_sig_fault() ->
arm64_show_signal().
arm64_show_signal() interprets a non-zero value for
current->thread.fault_code as an exception syndrome and displays the
message associated with the ESR_ELx.EC field (bits 31:26).
current->thread.fault_code is set in compat_arm_syscall() ->
arm64_notify_die() with the bad syscall number instead of a valid ESR_ELx
value. This means that the ESR_ELx.EC field has the value that the user set
for the syscall number and the kernel can end up printing bogus exception
messages*. For example, for the syscall number 0x68000000, which evaluates
to ESR_ELx.EC value of 0x1A (ESR_ELx_EC_FPAC) the kernel prints this error:
[ 18.349161] syscall[300]: unhandled exception: ERET/ERETAA/ERETAB, ESR 0x68000000, Oops - bad compat syscall(2) in syscall[10000+50000]
[ 18.350639] CPU: 2 PID: 300 Comm: syscall Not tainted 5.18.0-rc1 #79
[ 18.351249] Hardware name: Pine64 RockPro64 v2.0 (DT)
[..]
which is misleading, as the bad compat syscall has nothing to do with
pointer authentication.
Stop arm64_show_signal() from printing exception syndrome information by
having compat_arm_syscall() set the ESR_ELx value to 0, as it has no
meaning for an invalid system call number. The example above now becomes:
[ 19.935275] syscall[301]: unhandled exception: Oops - bad compat syscall(2) in syscall[10000+50000]
[ 19.936124] CPU: 1 PID: 301 Comm: syscall Not tainted 5.18.0-rc1-00005-g7e08006d4102 #80
[ 19.936894] Hardware name: Pine64 RockPro64 v2.0 (DT)
[..]
which although shows less information because the syscall number,
wrongfully advertised as the ESR value, is missing, it is better than
showing plainly wrong information. The syscall number can be easily
obtained with strace.
*A 32-bit value above or equal to 0x8000_0000 is interpreted as a negative
integer in compat_arm_syscal() and the condition scno < __ARM_NR_COMPAT_END
evaluates to true; the syscall will exit to userspace in this case with the
ENOSYS error code instead of arm64_notify_die() being called. |
| A logic issue existed in the handling of Group FaceTime calls. The issue was addressed with improved state management. This issue is fixed in iOS 12.1.4, macOS Mojave 10.14.3 Supplemental Update. The initiator of a Group FaceTime call may be able to cause the recipient to answer. |
| In Kentico before 13.0.66, attackers can achieve Denial of Service via a crafted request to the GetResource handler. |
| In the Linux kernel, the following vulnerability has been resolved:
seg6: Fix validation of nexthop addresses
The kernel currently validates that the length of the provided nexthop
address does not exceed the specified length. This can lead to the
kernel reading uninitialized memory if user space provided a shorter
length than the specified one.
Fix by validating that the provided length exactly matches the specified
one. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: remove ptp->n_vclocks check logic in ptp_vclock_in_use()
There is no disagreement that we should check both ptp->is_virtual_clock
and ptp->n_vclocks to check if the ptp virtual clock is in use.
However, when we acquire ptp->n_vclocks_mux to read ptp->n_vclocks in
ptp_vclock_in_use(), we observe a recursive lock in the call trace
starting from n_vclocks_store().
============================================
WARNING: possible recursive locking detected
6.15.0-rc6 #1 Not tainted
--------------------------------------------
syz.0.1540/13807 is trying to acquire lock:
ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
ptp_vclock_in_use drivers/ptp/ptp_private.h:103 [inline]
ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
ptp_clock_unregister+0x21/0x250 drivers/ptp/ptp_clock.c:415
but task is already holding lock:
ffff888030704868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
n_vclocks_store+0xf1/0x6d0 drivers/ptp/ptp_sysfs.c:215
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&ptp->n_vclocks_mux);
lock(&ptp->n_vclocks_mux);
*** DEADLOCK ***
....
============================================
The best way to solve this is to remove the logic that checks
ptp->n_vclocks in ptp_vclock_in_use().
The reason why this is appropriate is that any path that uses
ptp->n_vclocks must unconditionally check if ptp->n_vclocks is greater
than 0 before unregistering vclocks, and all functions are already
written this way. And in the function that uses ptp->n_vclocks, we
already get ptp->n_vclocks_mux before unregistering vclocks.
Therefore, we need to remove the redundant check for ptp->n_vclocks in
ptp_vclock_in_use() to prevent recursive locking. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel: KVM: Mask PEBS_ENABLE loaded for guest with vCPU's value.
When generating the MSR_IA32_PEBS_ENABLE value that will be loaded on
VM-Entry to a KVM guest, mask the value with the vCPU's desired PEBS_ENABLE
value. Consulting only the host kernel's host vs. guest masks results in
running the guest with PEBS enabled even when the guest doesn't want to use
PEBS. Because KVM uses perf events to proxy the guest virtual PMU, simply
looking at exclude_host can't differentiate between events created by host
userspace, and events created by KVM on behalf of the guest.
Running the guest with PEBS unexpectedly enabled typically manifests as
crashes due to a near-infinite stream of #PFs. E.g. if the guest hasn't
written MSR_IA32_DS_AREA, the CPU will hit page faults on address '0' when
trying to record PEBS events.
The issue is most easily reproduced by running `perf kvm top` from before
commit 7b100989b4f6 ("perf evlist: Remove __evlist__add_default") (after
which, `perf kvm top` effectively stopped using PEBS). The userspace side
of perf creates a guest-only PEBS event, which intel_guest_get_msrs()
misconstrues a guest-*owned* PEBS event.
Arguably, this is a userspace bug, as enabling PEBS on guest-only events
simply cannot work, and userspace can kill VMs in many other ways (there
is no danger to the host). However, even if this is considered to be bad
userspace behavior, there's zero downside to perf/KVM restricting PEBS to
guest-owned events.
Note, commit 854250329c02 ("KVM: x86/pmu: Disable guest PEBS temporarily
in two rare situations") fixed the case where host userspace is profiling
KVM *and* userspace, but missed the case where userspace is profiling only
KVM. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: adjust subpage bit start based on sectorsize
When running machines with 64k page size and a 16k nodesize we started
seeing tree log corruption in production. This turned out to be because
we were not writing out dirty blocks sometimes, so this in fact affects
all metadata writes.
When writing out a subpage EB we scan the subpage bitmap for a dirty
range. If the range isn't dirty we do
bit_start++;
to move onto the next bit. The problem is the bitmap is based on the
number of sectors that an EB has. So in this case, we have a 64k
pagesize, 16k nodesize, but a 4k sectorsize. This means our bitmap is 4
bits for every node. With a 64k page size we end up with 4 nodes per
page.
To make this easier this is how everything looks
[0 16k 32k 48k ] logical address
[0 4 8 12 ] radix tree offset
[ 64k page ] folio
[ 16k eb ][ 16k eb ][ 16k eb ][ 16k eb ] extent buffers
[ | | | | | | | | | | | | | | | | ] bitmap
Now we use all of our addressing based on fs_info->sectorsize_bits, so
as you can see the above our 16k eb->start turns into radix entry 4.
When we find a dirty range for our eb, we correctly do bit_start +=
sectors_per_node, because if we start at bit 0, the next bit for the
next eb is 4, to correspond to eb->start 16k.
However if our range is clean, we will do bit_start++, which will now
put us offset from our radix tree entries.
In our case, assume that the first time we check the bitmap the block is
not dirty, we increment bit_start so now it == 1, and then we loop
around and check again. This time it is dirty, and we go to find that
start using the following equation
start = folio_start + bit_start * fs_info->sectorsize;
so in the case above, eb->start 0 is now dirty, and we calculate start
as
0 + 1 * fs_info->sectorsize = 4096
4096 >> 12 = 1
Now we're looking up the radix tree for 1, and we won't find an eb.
What's worse is now we're using bit_start == 1, so we do bit_start +=
sectors_per_node, which is now 5. If that eb is dirty we will run into
the same thing, we will look at an offset that is not populated in the
radix tree, and now we're skipping the writeout of dirty extent buffers.
The best fix for this is to not use sectorsize_bits to address nodes,
but that's a larger change. Since this is a fs corruption problem fix
it simply by always using sectors_per_node to increment the start bit. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on ino and xnid
syzbot reported a f2fs bug as below:
INFO: task syz-executor140:5308 blocked for more than 143 seconds.
Not tainted 6.14.0-rc7-syzkaller-00069-g81e4f8d68c66 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor140 state:D stack:24016 pid:5308 tgid:5308 ppid:5306 task_flags:0x400140 flags:0x00000006
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5378 [inline]
__schedule+0x190e/0x4c90 kernel/sched/core.c:6765
__schedule_loop kernel/sched/core.c:6842 [inline]
schedule+0x14b/0x320 kernel/sched/core.c:6857
io_schedule+0x8d/0x110 kernel/sched/core.c:7690
folio_wait_bit_common+0x839/0xee0 mm/filemap.c:1317
__folio_lock mm/filemap.c:1664 [inline]
folio_lock include/linux/pagemap.h:1163 [inline]
__filemap_get_folio+0x147/0xb40 mm/filemap.c:1917
pagecache_get_page+0x2c/0x130 mm/folio-compat.c:87
find_get_page_flags include/linux/pagemap.h:842 [inline]
f2fs_grab_cache_page+0x2b/0x320 fs/f2fs/f2fs.h:2776
__get_node_page+0x131/0x11b0 fs/f2fs/node.c:1463
read_xattr_block+0xfb/0x190 fs/f2fs/xattr.c:306
lookup_all_xattrs fs/f2fs/xattr.c:355 [inline]
f2fs_getxattr+0x676/0xf70 fs/f2fs/xattr.c:533
__f2fs_get_acl+0x52/0x870 fs/f2fs/acl.c:179
f2fs_acl_create fs/f2fs/acl.c:375 [inline]
f2fs_init_acl+0xd7/0x9b0 fs/f2fs/acl.c:418
f2fs_init_inode_metadata+0xa0f/0x1050 fs/f2fs/dir.c:539
f2fs_add_inline_entry+0x448/0x860 fs/f2fs/inline.c:666
f2fs_add_dentry+0xba/0x1e0 fs/f2fs/dir.c:765
f2fs_do_add_link+0x28c/0x3a0 fs/f2fs/dir.c:808
f2fs_add_link fs/f2fs/f2fs.h:3616 [inline]
f2fs_mknod+0x2e8/0x5b0 fs/f2fs/namei.c:766
vfs_mknod+0x36d/0x3b0 fs/namei.c:4191
unix_bind_bsd net/unix/af_unix.c:1286 [inline]
unix_bind+0x563/0xe30 net/unix/af_unix.c:1379
__sys_bind_socket net/socket.c:1817 [inline]
__sys_bind+0x1e4/0x290 net/socket.c:1848
__do_sys_bind net/socket.c:1853 [inline]
__se_sys_bind net/socket.c:1851 [inline]
__x64_sys_bind+0x7a/0x90 net/socket.c:1851
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Let's dump and check metadata of corrupted inode, it shows its xattr_nid
is the same to its i_ino.
dump.f2fs -i 3 chaseyu.img.raw
i_xattr_nid [0x 3 : 3]
So that, during mknod in the corrupted directory, it tries to get and
lock inode page twice, result in deadlock.
- f2fs_mknod
- f2fs_add_inline_entry
- f2fs_get_inode_page --- lock dir's inode page
- f2fs_init_acl
- f2fs_acl_create(dir,..)
- __f2fs_get_acl
- f2fs_getxattr
- lookup_all_xattrs
- __get_node_page --- try to lock dir's inode page
In order to fix this, let's add sanity check on ino and xnid. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: cortina: Use TOE/TSO on all TCP
It is desireable to push the hardware accelerator to also
process non-segmented TCP frames: we pass the skb->len
to the "TOE/TSO" offloader and it will handle them.
Without this quirk the driver becomes unstable and lock
up and and crash.
I do not know exactly why, but it is probably due to the
TOE (TCP offload engine) feature that is coupled with the
segmentation feature - it is not possible to turn one
part off and not the other, either both TOE and TSO are
active, or neither of them.
Not having the TOE part active seems detrimental, as if
that hardware feature is not really supposed to be turned
off.
The datasheet says:
"Based on packet parsing and TCP connection/NAT table
lookup results, the NetEngine puts the packets
belonging to the same TCP connection to the same queue
for the software to process. The NetEngine puts
incoming packets to the buffer or series of buffers
for a jumbo packet. With this hardware acceleration,
IP/TCP header parsing, checksum validation and
connection lookup are offloaded from the software
processing."
After numerous tests with the hardware locking up after
something between minutes and hours depending on load
using iperf3 I have concluded this is necessary to stabilize
the hardware. |
| In the Linux kernel, the following vulnerability has been resolved:
aoe: clean device rq_list in aoedev_downdev()
An aoe device's rq_list contains accepted block requests that are
waiting to be transmitted to the aoe target. This queue was added as
part of the conversion to blk_mq. However, the queue was not cleaned out
when an aoe device is downed which caused blk_mq_freeze_queue() to sleep
indefinitely waiting for those requests to complete, causing a hang. This
fix cleans out the queue before calling blk_mq_freeze_queue(). |
| In the Linux kernel, the following vulnerability has been resolved:
mpls: Use rcu_dereference_rtnl() in mpls_route_input_rcu().
As syzbot reported [0], mpls_route_input_rcu() can be called
from mpls_getroute(), where is under RTNL.
net->mpls.platform_label is only updated under RTNL.
Let's use rcu_dereference_rtnl() in mpls_route_input_rcu() to
silence the splat.
[0]:
WARNING: suspicious RCU usage
6.15.0-rc7-syzkaller-00082-g5cdb2c77c4c3 #0 Not tainted
----------------------------
net/mpls/af_mpls.c:84 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by syz.2.4451/17730:
#0: ffffffff9012a3e8 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_lock net/core/rtnetlink.c:80 [inline]
#0: ffffffff9012a3e8 (rtnl_mutex){+.+.}-{4:4}, at: rtnetlink_rcv_msg+0x371/0xe90 net/core/rtnetlink.c:6961
stack backtrace:
CPU: 1 UID: 0 PID: 17730 Comm: syz.2.4451 Not tainted 6.15.0-rc7-syzkaller-00082-g5cdb2c77c4c3 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120
lockdep_rcu_suspicious+0x166/0x260 kernel/locking/lockdep.c:6865
mpls_route_input_rcu+0x1d4/0x200 net/mpls/af_mpls.c:84
mpls_getroute+0x621/0x1ea0 net/mpls/af_mpls.c:2381
rtnetlink_rcv_msg+0x3c9/0xe90 net/core/rtnetlink.c:6964
netlink_rcv_skb+0x16d/0x440 net/netlink/af_netlink.c:2534
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg net/socket.c:727 [inline]
____sys_sendmsg+0xa98/0xc70 net/socket.c:2566
___sys_sendmsg+0x134/0x1d0 net/socket.c:2620
__sys_sendmmsg+0x200/0x420 net/socket.c:2709
__do_sys_sendmmsg net/socket.c:2736 [inline]
__se_sys_sendmmsg net/socket.c:2733 [inline]
__x64_sys_sendmmsg+0x9c/0x100 net/socket.c:2733
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x230 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f0a2818e969
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f0a28f52038 EFLAGS: 00000246 ORIG_RAX: 0000000000000133
RAX: ffffffffffffffda RBX: 00007f0a283b5fa0 RCX: 00007f0a2818e969
RDX: 0000000000000003 RSI: 0000200000000080 RDI: 0000000000000003
RBP: 00007f0a28210ab1 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f0a283b5fa0 R15: 00007ffce5e9f268
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel: Fix crash in icl_update_topdown_event()
The perf_fuzzer found a hard-lockup crash on a RaptorLake machine:
Oops: general protection fault, maybe for address 0xffff89aeceab400: 0000
CPU: 23 UID: 0 PID: 0 Comm: swapper/23
Tainted: [W]=WARN
Hardware name: Dell Inc. Precision 9660/0VJ762
RIP: 0010:native_read_pmc+0x7/0x40
Code: cc e8 8d a9 01 00 48 89 03 5b cd cc cc cc cc 0f 1f ...
RSP: 000:fffb03100273de8 EFLAGS: 00010046
....
Call Trace:
<TASK>
icl_update_topdown_event+0x165/0x190
? ktime_get+0x38/0xd0
intel_pmu_read_event+0xf9/0x210
__perf_event_read+0xf9/0x210
CPUs 16-23 are E-core CPUs that don't support the perf metrics feature.
The icl_update_topdown_event() should not be invoked on these CPUs.
It's a regression of commit:
f9bdf1f95339 ("perf/x86/intel: Avoid disable PMU if !cpuc->enabled in sample read")
The bug introduced by that commit is that the is_topdown_event() function
is mistakenly used to replace the is_topdown_count() call to check if the
topdown functions for the perf metrics feature should be invoked.
Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
vxlan: Annotate FDB data races
The 'used' and 'updated' fields in the FDB entry structure can be
accessed concurrently by multiple threads, leading to reports such as
[1]. Can be reproduced using [2].
Suppress these reports by annotating these accesses using
READ_ONCE() / WRITE_ONCE().
[1]
BUG: KCSAN: data-race in vxlan_xmit / vxlan_xmit
write to 0xffff942604d263a8 of 8 bytes by task 286 on cpu 0:
vxlan_xmit+0xb29/0x2380
dev_hard_start_xmit+0x84/0x2f0
__dev_queue_xmit+0x45a/0x1650
packet_xmit+0x100/0x150
packet_sendmsg+0x2114/0x2ac0
__sys_sendto+0x318/0x330
__x64_sys_sendto+0x76/0x90
x64_sys_call+0x14e8/0x1c00
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff942604d263a8 of 8 bytes by task 287 on cpu 2:
vxlan_xmit+0xadf/0x2380
dev_hard_start_xmit+0x84/0x2f0
__dev_queue_xmit+0x45a/0x1650
packet_xmit+0x100/0x150
packet_sendmsg+0x2114/0x2ac0
__sys_sendto+0x318/0x330
__x64_sys_sendto+0x76/0x90
x64_sys_call+0x14e8/0x1c00
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
value changed: 0x00000000fffbac6e -> 0x00000000fffbac6f
Reported by Kernel Concurrency Sanitizer on:
CPU: 2 UID: 0 PID: 287 Comm: mausezahn Not tainted 6.13.0-rc7-01544-gb4b270f11a02 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
[2]
#!/bin/bash
set +H
echo whitelist > /sys/kernel/debug/kcsan
echo !vxlan_xmit > /sys/kernel/debug/kcsan
ip link add name vx0 up type vxlan id 10010 dstport 4789 local 192.0.2.1
bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 198.51.100.1
taskset -c 0 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q &
taskset -c 2 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q & |