Search Results (40612 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-15232 1 Tenda 2 M3, M3 Firmware 2026-01-05 8.8 High
A vulnerability was identified in Tenda M3 1.0.0.13(4903). This vulnerability affects the function formSetAdPushInfo of the file /goform/setAdPushInfo. The manipulation of the argument mac/terminal leads to stack-based buffer overflow. The attack is possible to be carried out remotely. The exploit is publicly available and might be used.
CVE-2025-15233 1 Tenda 2 M3, M3 Firmware 2026-01-05 8.8 High
A security flaw has been discovered in Tenda M3 1.0.0.13(4903). This issue affects the function formSetAdInfoDetails of the file /goform/setAdInfoDetail. The manipulation of the argument adName/smsPassword/smsAccount/weixinAccount/weixinName/smsSignature/adRedirectUrl/adCopyRight/smsContent/adItemUID results in heap-based buffer overflow. The attack may be performed from remote. The exploit has been released to the public and may be exploited.
CVE-2025-15252 1 Tenda 2 M3, M3 Firmware 2026-01-05 8.8 High
A flaw has been found in Tenda M3 1.0.0.13(4903). The affected element is the function formSetRemoteDhcpForAp of the file /goform/setDhcpAP. This manipulation of the argument startip/endip/leasetime/gateway/dns1/dns2 causes stack-based buffer overflow. The attack can be initiated remotely. The exploit has been published and may be used.
CVE-2025-15253 1 Tenda 2 M3, M3 Firmware 2026-01-05 8.8 High
A vulnerability has been found in Tenda M3 1.0.0.13(4903). The impacted element is an unknown function of the file /goform/exeCommand. Such manipulation of the argument cmdinput leads to stack-based buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
CVE-2025-15255 1 Tenda 2 W6-s, W6-s Firmware 2026-01-05 9.8 Critical
A vulnerability was determined in Tenda W6-S 1.0.0.4(510). This impacts an unknown function of the file /bin/httpd of the component R7websSsecurityHandler. Executing manipulation of the argument Cookie can lead to stack-based buffer overflow. The attack may be launched remotely. The exploit has been publicly disclosed and may be utilized.
CVE-2025-15356 1 Tenda 2 Ac20, Ac20 Firmware 2026-01-05 8.8 High
A vulnerability has been found in Tenda AC20 up to 16.03.08.12. The impacted element is the function sscanf of the file /goform/PowerSaveSet. The manipulation of the argument powerSavingEn/time/powerSaveDelay/ledCloseType leads to buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
CVE-2023-53309 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Fix integer overflow in radeon_cs_parser_init The type of size is unsigned, if size is 0x40000000, there will be an integer overflow, size will be zero after size *= sizeof(uint32_t), will cause uninitialized memory to be referenced later
CVE-2025-11961 1 Tcpdump 1 Libpcap 2026-01-05 1.9 Low
pcap_ether_aton() is an auxiliary function in libpcap, it takes a string argument and returns a fixed-size allocated buffer. The string argument must be a well-formed MAC-48 address in one of the supported formats, but this requirement has been poorly documented. If an application calls the function with an argument that deviates from the expected format, the function can read data beyond the end of the provided string and write data beyond the end of the allocated buffer.
CVE-2023-53254 1 Linux 1 Linux Kernel 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: cacheinfo: Fix shared_cpu_map to handle shared caches at different levels The cacheinfo sets up the shared_cpu_map by checking whether the caches with the same index are shared between CPUs. However, this will trigger slab-out-of-bounds access if the CPUs do not have the same cache hierarchy. Another problem is the mismatched shared_cpu_map when the shared cache does not have the same index between CPUs. CPU0 I D L3 index 0 1 2 x ^ ^ ^ ^ index 0 1 2 3 CPU1 I D L2 L3 This patch checks each cache is shared with all caches on other CPUs.
CVE-2023-53222 1 Linux 1 Linux Kernel 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: jfs: jfs_dmap: Validate db_l2nbperpage while mounting In jfs_dmap.c at line 381, BLKTODMAP is used to get a logical block number inside dbFree(). db_l2nbperpage, which is the log2 number of blocks per page, is passed as an argument to BLKTODMAP which uses it for shifting. Syzbot reported a shift out-of-bounds crash because db_l2nbperpage is too big. This happens because the large value is set without any validation in dbMount() at line 181. Thus, make sure that db_l2nbperpage is correct while mounting. Max number of blocks per page = Page size / Min block size => log2(Max num_block per page) = log2(Page size / Min block size) = log2(Page size) - log2(Min block size) => Max db_l2nbperpage = L2PSIZE - L2MINBLOCKSIZE
CVE-2023-53213 1 Linux 1 Linux Kernel 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: slab-out-of-bounds read in brcmf_get_assoc_ies() Fix a slab-out-of-bounds read that occurs in kmemdup() called from brcmf_get_assoc_ies(). The bug could occur when assoc_info->req_len, data from a URB provided by a USB device, is bigger than the size of buffer which is defined as WL_EXTRA_BUF_MAX. Add the size check for req_len/resp_len of assoc_info. Found by a modified version of syzkaller. [ 46.592467][ T7] ================================================================== [ 46.594687][ T7] BUG: KASAN: slab-out-of-bounds in kmemdup+0x3e/0x50 [ 46.596572][ T7] Read of size 3014656 at addr ffff888019442000 by task kworker/0:1/7 [ 46.598575][ T7] [ 46.599157][ T7] CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #145 [ 46.601333][ T7] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 [ 46.604360][ T7] Workqueue: events brcmf_fweh_event_worker [ 46.605943][ T7] Call Trace: [ 46.606584][ T7] dump_stack_lvl+0x8e/0xd1 [ 46.607446][ T7] print_address_description.constprop.0.cold+0x93/0x334 [ 46.608610][ T7] ? kmemdup+0x3e/0x50 [ 46.609341][ T7] kasan_report.cold+0x79/0xd5 [ 46.610151][ T7] ? kmemdup+0x3e/0x50 [ 46.610796][ T7] kasan_check_range+0x14e/0x1b0 [ 46.611691][ T7] memcpy+0x20/0x60 [ 46.612323][ T7] kmemdup+0x3e/0x50 [ 46.612987][ T7] brcmf_get_assoc_ies+0x967/0xf60 [ 46.613904][ T7] ? brcmf_notify_vif_event+0x3d0/0x3d0 [ 46.614831][ T7] ? lock_chain_count+0x20/0x20 [ 46.615683][ T7] ? mark_lock.part.0+0xfc/0x2770 [ 46.616552][ T7] ? lock_chain_count+0x20/0x20 [ 46.617409][ T7] ? mark_lock.part.0+0xfc/0x2770 [ 46.618244][ T7] ? lock_chain_count+0x20/0x20 [ 46.619024][ T7] brcmf_bss_connect_done.constprop.0+0x241/0x2e0 [ 46.620019][ T7] ? brcmf_parse_configure_security.isra.0+0x2a0/0x2a0 [ 46.620818][ T7] ? __lock_acquire+0x181f/0x5790 [ 46.621462][ T7] brcmf_notify_connect_status+0x448/0x1950 [ 46.622134][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 46.622736][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0 [ 46.623390][ T7] ? find_held_lock+0x2d/0x110 [ 46.623962][ T7] ? brcmf_fweh_event_worker+0x19f/0xc60 [ 46.624603][ T7] ? mark_held_locks+0x9f/0xe0 [ 46.625145][ T7] ? lockdep_hardirqs_on_prepare+0x3e0/0x3e0 [ 46.625871][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0 [ 46.626545][ T7] brcmf_fweh_call_event_handler.isra.0+0x90/0x100 [ 46.627338][ T7] brcmf_fweh_event_worker+0x557/0xc60 [ 46.627962][ T7] ? brcmf_fweh_call_event_handler.isra.0+0x100/0x100 [ 46.628736][ T7] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 46.629396][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 46.629970][ T7] ? lockdep_hardirqs_on_prepare+0x273/0x3e0 [ 46.630649][ T7] process_one_work+0x92b/0x1460 [ 46.631205][ T7] ? pwq_dec_nr_in_flight+0x330/0x330 [ 46.631821][ T7] ? rwlock_bug.part.0+0x90/0x90 [ 46.632347][ T7] worker_thread+0x95/0xe00 [ 46.632832][ T7] ? __kthread_parkme+0x115/0x1e0 [ 46.633393][ T7] ? process_one_work+0x1460/0x1460 [ 46.633957][ T7] kthread+0x3a1/0x480 [ 46.634369][ T7] ? set_kthread_struct+0x120/0x120 [ 46.634933][ T7] ret_from_fork+0x1f/0x30 [ 46.635431][ T7] [ 46.635687][ T7] Allocated by task 7: [ 46.636151][ T7] kasan_save_stack+0x1b/0x40 [ 46.636628][ T7] __kasan_kmalloc+0x7c/0x90 [ 46.637108][ T7] kmem_cache_alloc_trace+0x19e/0x330 [ 46.637696][ T7] brcmf_cfg80211_attach+0x4a0/0x4040 [ 46.638275][ T7] brcmf_attach+0x389/0xd40 [ 46.638739][ T7] brcmf_usb_probe+0x12de/0x1690 [ 46.639279][ T7] usb_probe_interface+0x2aa/0x760 [ 46.639820][ T7] really_probe+0x205/0xb70 [ 46.640342][ T7] __driver_probe_device+0 ---truncated---
CVE-2023-53117 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: fs: prevent out-of-bounds array speculation when closing a file descriptor Google-Bug-Id: 114199369
CVE-2025-2026 1 Moxa 2 Nport 6100-g2 Series, Nport 6200-g2 Series 2026-01-05 N/A
The NPort 6100-G2/6200-G2 Series is affected by a high-severity vulnerability (CVE-2025-2026) that allows remote attackers to execute a null byte injection through the device’s web API. This may lead to an unexpected device reboot and result in a denial-of-service (DoS) condition. An authenticated remote attacker with web read-only privileges can exploit the vulnerable API to inject malicious input. Successful exploitation may cause the device to reboot, disrupting normal operations and causing a temporary denial of service.
CVE-2023-52835 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: perf/core: Bail out early if the request AUX area is out of bound When perf-record with a large AUX area, e.g 4GB, it fails with: #perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1 failed to mmap with 12 (Cannot allocate memory) and it reveals a WARNING with __alloc_pages(): ------------[ cut here ]------------ WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248 Call trace: __alloc_pages+0x1ec/0x248 __kmalloc_large_node+0xc0/0x1f8 __kmalloc_node+0x134/0x1e8 rb_alloc_aux+0xe0/0x298 perf_mmap+0x440/0x660 mmap_region+0x308/0x8a8 do_mmap+0x3c0/0x528 vm_mmap_pgoff+0xf4/0x1b8 ksys_mmap_pgoff+0x18c/0x218 __arm64_sys_mmap+0x38/0x58 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0x58/0x188 do_el0_svc+0x34/0x50 el0_svc+0x34/0x108 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x1a4/0x1a8 'rb->aux_pages' allocated by kcalloc() is a pointer array which is used to maintains AUX trace pages. The allocated page for this array is physically contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the size of pointer array crosses the limitation set by MAX_ORDER, it reveals a WARNING. So bail out early with -ENOMEM if the request AUX area is out of bound, e.g.: #perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1 failed to mmap with 12 (Cannot allocate memory)
CVE-2023-52834 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: atl1c: Work around the DMA RX overflow issue This is based on alx driver commit 881d0327db37 ("net: alx: Work around the DMA RX overflow issue"). The alx and atl1c drivers had RX overflow error which was why a custom allocator was created to avoid certain addresses. The simpler workaround then created for alx driver, but not for atl1c due to lack of tester. Instead of using a custom allocator, check the allocated skb address and use skb_reserve() to move away from problematic 0x...fc0 address. Tested on AR8131 on Acer 4540.
CVE-2023-52819 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 6.6 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd: Fix UBSAN array-index-out-of-bounds for Polaris and Tonga For pptable structs that use flexible array sizes, use flexible arrays.
CVE-2023-52818 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd: Fix UBSAN array-index-out-of-bounds for SMU7 For pptable structs that use flexible array sizes, use flexible arrays.
CVE-2023-52812 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd: check num of link levels when update pcie param In SR-IOV environment, the value of pcie_table->num_of_link_levels will be 0, and num_of_levels - 1 will cause array index out of bounds
CVE-2023-52810 1 Linux 1 Linux Kernel 2026-01-05 8.4 High
In the Linux kernel, the following vulnerability has been resolved: fs/jfs: Add check for negative db_l2nbperpage l2nbperpage is log2(number of blks per page), and the minimum legal value should be 0, not negative. In the case of l2nbperpage being negative, an error will occur when subsequently used as shift exponent. Syzbot reported this bug: UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:799:12 shift exponent -16777216 is negative
CVE-2023-52805 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in diAlloc Currently there is not check against the agno of the iag while allocating new inodes to avoid fragmentation problem. Added the check which is required.