| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Libsndfile <=1.2.2 contains a memory leak vulnerability in the mpeg_l3_encoder_init() function within the mpeg_l3_encode.c file. |
| Multi-thread race condition vulnerability in the card framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| Permission verification bypass vulnerability in the media library module.
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: PM: Fix reverse check in filesystems_freeze_callback()
The freeze_all_ptr check in filesystems_freeze_callback() introduced by
commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which
quite confusingly causes all file systems to be frozen when
filesystem_freeze_enabled is false.
On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to
trigger, most likely due to an attempt to freeze a file system that is
not ready for that.
Add a logical negation to the check in question to reverse it as
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: ensure node page reads complete before f2fs_put_super() finishes
Xfstests generic/335, generic/336 sometimes crash with the following message:
F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1
------------[ cut here ]------------
kernel BUG at fs/f2fs/super.c:1939!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none)
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_put_super+0x3b3/0x3c0
Call Trace:
<TASK>
generic_shutdown_super+0x7e/0x190
kill_block_super+0x1a/0x40
kill_f2fs_super+0x9d/0x190
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x5c/0xa0
exit_to_user_mode_loop+0xb7/0xc0
do_syscall_64+0x1ae/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
It appears that sometimes it is possible that f2fs_put_super() is called before
all node page reads are completed.
Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits
Since commit e424054000878 ("MIPS: Tracing: Reduce the overhead of
dynamic Function Tracer"), the macro UASM_i_LA_mostly has been used,
and this macro can generate more than 2 instructions. At the same
time, the code in ftrace assumes that no more than 2 instructions can
be generated, which is why it stores them in an int[2] array. However,
as previously noted, the macro UASM_i_LA_mostly (and now UASM_i_LA)
causes a buffer overflow when _mcount is beyond 32 bits. This leads to
corruption of the variables located in the __read_mostly section.
This corruption was observed because the variable
__cpu_primary_thread_mask was corrupted, causing a hang very early
during boot.
This fix prevents the corruption by avoiding the generation of
instructions if they could exceed 2 instructions in
length. Fortunately, insn_la_mcount is only used if the instrumented
code is located outside the kernel code section, so dynamic ftrace can
still be used, albeit in a more limited scope. This is still
preferable to corrupting memory and/or crashing the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: reset KASAN tag in defer_free() before accessing freed memory
When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free()
before defer_free(). On ARM64 with MTE (Memory Tagging Extension),
kasan_slab_free() poisons the memory and changes the tag from the
original (e.g., 0xf3) to a poison tag (0xfe).
When defer_free() then tries to write to the freed object to build the
deferred free list via llist_add(), the pointer still has the old tag,
causing a tag mismatch and triggering a KASAN use-after-free report:
BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537
Write at addr f3f000000854f020 by task kworker/u8:6/983
Pointer tag: [f3], memory tag: [fe]
Fix this by calling kasan_reset_tag() before accessing the freed memory.
This is safe because defer_free() is part of the allocator itself and is
expected to manipulate freed memory for bookkeeping purposes. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Convert macros to functions to avoid TOCTOU
The macro FAN_FROM_REG evaluates its arguments multiple times. When used
in lockless contexts involving shared driver data, this leads to
Time-of-Check to Time-of-Use (TOCTOU) race conditions, potentially
causing divide-by-zero errors.
Convert the macro to a static function. This guarantees that arguments
are evaluated only once (pass-by-value), preventing the race
conditions.
Additionally, in store_fan_div, move the calculation of the minimum
limit inside the update lock. This ensures that the read-modify-write
sequence operates on consistent data.
Adhere to the principle of minimal changes by only converting macros
that evaluate arguments multiple times and are used in lockless
contexts. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: add VLAN id validation before using
Currently, the VLAN id may be used without validation when
receive a VLAN configuration mailbox from VF. The length of
vlan_del_fail_bmap is BITS_TO_LONGS(VLAN_N_VID). It may cause
out-of-bounds memory access once the VLAN id is bigger than
or equal to VLAN_N_VID.
Therefore, VLAN id needs to be checked to ensure it is within
the range of VLAN_N_VID. |
| In the Linux kernel, the following vulnerability has been resolved:
via_wdt: fix critical boot hang due to unnamed resource allocation
The VIA watchdog driver uses allocate_resource() to reserve a MMIO
region for the watchdog control register. However, the allocated
resource was not given a name, which causes the kernel resource tree
to contain an entry marked as "<BAD>" under /proc/iomem on x86
platforms.
During boot, this unnamed resource can lead to a critical hang because
subsequent resource lookups and conflict checks fail to handle the
invalid entry properly. |
| In the Linux kernel, the following vulnerability has been resolved:
um: init cpu_tasks[] earlier
This is currently done in uml_finishsetup(), but e.g. with
KCOV enabled we'll crash because some init code can call
into e.g. memparse(), which has coverage annotations, and
then the checks in check_kcov_mode() crash because current
is NULL.
Simply initialize the cpu_tasks[] array statically, which
fixes the crash. For the later SMP work, it seems to have
not really caused any problems yet, but initialize all of
the entries anyway. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: make decode_pool() more resilient against corrupted osdmaps
If the osdmap is (maliciously) corrupted such that the encoded length
of ceph_pg_pool envelope is less than what is expected for a particular
encoding version, out-of-bounds reads may ensue because the only bounds
check that is there is based on that length value.
This patch adds explicit bounds checks for each field that is decoded
or skipped. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: svcauth_gss: avoid NULL deref on zero length gss_token in gss_read_proxy_verf
A zero length gss_token results in pages == 0 and in_token->pages[0]
is NULL. The code unconditionally evaluates
page_address(in_token->pages[0]) for the initial memcpy, which can
dereference NULL even when the copy length is 0. Guard the first
memcpy so it only runs when length > 0. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Do not reprogram affinitiy on ASP chip
The ASP chip is a very old variant of the GSP chip and is used e.g. in
HP 730 workstations. When trying to reprogram the affinity it will crash
with a HPMC as the relevant registers don't seem to be at the usual
location. Let's avoid the crash by checking the sversion. Also note,
that reprogramming isn't necessary either, as the HP730 is a just a
single-CPU machine. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd/selftest: Check for overflow in IOMMU_TEST_OP_ADD_RESERVED
syzkaller found it could overflow math in the test infrastructure and
cause a WARN_ON by corrupting the reserved interval tree. This only
effects test kernels with CONFIG_IOMMUFD_TEST.
Validate the user input length in the test ioctl. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix string copying in parse_apply_sb_mount_options()
strscpy_pad() can't be used to copy a non-NUL-term string into a NUL-term
string of possibly bigger size. Commit 0efc5990bca5 ("string.h: Introduce
memtostr() and memtostr_pad()") provides additional information in that
regard. So if this happens, the following warning is observed:
strnlen: detected buffer overflow: 65 byte read of buffer size 64
WARNING: CPU: 0 PID: 28655 at lib/string_helpers.c:1032 __fortify_report+0x96/0xc0 lib/string_helpers.c:1032
Modules linked in:
CPU: 0 UID: 0 PID: 28655 Comm: syz-executor.3 Not tainted 6.12.54-syzkaller-00144-g5f0270f1ba00 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:__fortify_report+0x96/0xc0 lib/string_helpers.c:1032
Call Trace:
<TASK>
__fortify_panic+0x1f/0x30 lib/string_helpers.c:1039
strnlen include/linux/fortify-string.h:235 [inline]
sized_strscpy include/linux/fortify-string.h:309 [inline]
parse_apply_sb_mount_options fs/ext4/super.c:2504 [inline]
__ext4_fill_super fs/ext4/super.c:5261 [inline]
ext4_fill_super+0x3c35/0xad00 fs/ext4/super.c:5706
get_tree_bdev_flags+0x387/0x620 fs/super.c:1636
vfs_get_tree+0x93/0x380 fs/super.c:1814
do_new_mount fs/namespace.c:3553 [inline]
path_mount+0x6ae/0x1f70 fs/namespace.c:3880
do_mount fs/namespace.c:3893 [inline]
__do_sys_mount fs/namespace.c:4103 [inline]
__se_sys_mount fs/namespace.c:4080 [inline]
__x64_sys_mount+0x280/0x300 fs/namespace.c:4080
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x64/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Since userspace is expected to provide s_mount_opts field to be at most 63
characters long with the ending byte being NUL-term, use a 64-byte buffer
which matches the size of s_mount_opts, so that strscpy_pad() does its job
properly. Return with error if the user still managed to provide a
non-NUL-term string here.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Discard Beacon frames to non-broadcast address
Beacon frames are required to be sent to the broadcast address, see IEEE
Std 802.11-2020, 11.1.3.1 ("The Address 1 field of the Beacon .. frame
shall be set to the broadcast address"). A unicast Beacon frame might be
used as a targeted attack to get one of the associated STAs to do
something (e.g., using CSA to move it to another channel). As such, it
is better have strict filtering for this on the received side and
discard all Beacon frames that are sent to an unexpected address.
This is even more important for cases where beacon protection is used.
The current implementation in mac80211 is correctly discarding unicast
Beacon frames if the Protected Frame bit in the Frame Control field is
set to 0. However, if that bit is set to 1, the logic used for checking
for configured BIGTK(s) does not actually work. If the driver does not
have logic for dropping unicast Beacon frames with Protected Frame bit
1, these frames would be accepted in mac80211 processing as valid Beacon
frames even though they are not protected. This would allow beacon
protection to be bypassed. While the logic for checking beacon
protection could be extended to cover this corner case, a more generic
check for discard all Beacon frames based on A1=unicast address covers
this without needing additional changes.
Address all these issues by dropping received Beacon frames if they are
sent to a non-broadcast address. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Sign extend kfunc call arguments
The kfunc calls are native calls so they should follow LoongArch calling
conventions. Sign extend its arguments properly to avoid kernel panic.
This is done by adding a new emit_abi_ext() helper. The emit_abi_ext()
helper performs extension in place meaning a value already store in the
target register (Note: this is different from the existing sign_extend()
helper and thus we can't reuse it). |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: seqiv - Do not use req->iv after crypto_aead_encrypt
As soon as crypto_aead_encrypt is called, the underlying request
may be freed by an asynchronous completion. Thus dereferencing
req->iv after it returns is invalid.
Instead of checking req->iv against info, create a new variable
unaligned_info and use it for that purpose instead. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: fix possible null-pointer dereferences in raid5_store_group_thread_cnt()
The variable mddev->private is first assigned to conf and then checked:
conf = mddev->private;
if (!conf) ...
If conf is NULL, then mddev->private is also NULL. In this case,
null-pointer dereferences can occur when calling raid5_quiesce():
raid5_quiesce(mddev, true);
raid5_quiesce(mddev, false);
since mddev->private is assigned to conf again in raid5_quiesce(), and conf
is dereferenced in several places, for example:
conf->quiesce = 0;
wake_up(&conf->wait_for_quiescent);
To fix this issue, the function should unlock mddev and return before
invoking raid5_quiesce() when conf is NULL, following the existing pattern
in raid5_change_consistency_policy(). |