| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: fix some leaks in probe
The dwc3_get_properties() function calls:
dwc->usb_psy = power_supply_get_by_name(usb_psy_name);
so there is some additional clean up required on these error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: sfb: fix null pointer access issue when sfb_init() fails
When the default qdisc is sfb, if the qdisc of dev_queue fails to be
inited during mqprio_init(), sfb_reset() is invoked to clear resources.
In this case, the q->qdisc is NULL, and it will cause gpf issue.
The process is as follows:
qdisc_create_dflt()
sfb_init()
tcf_block_get() --->failed, q->qdisc is NULL
...
qdisc_put()
...
sfb_reset()
qdisc_reset(q->qdisc) --->q->qdisc is NULL
ops = qdisc->ops
The following is the Call Trace information:
general protection fault, probably for non-canonical address
0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
RIP: 0010:qdisc_reset+0x2b/0x6f0
Call Trace:
<TASK>
sfb_reset+0x37/0xd0
qdisc_reset+0xed/0x6f0
qdisc_destroy+0x82/0x4c0
qdisc_put+0x9e/0xb0
qdisc_create_dflt+0x2c3/0x4a0
mqprio_init+0xa71/0x1760
qdisc_create+0x3eb/0x1000
tc_modify_qdisc+0x408/0x1720
rtnetlink_rcv_msg+0x38e/0xac0
netlink_rcv_skb+0x12d/0x3a0
netlink_unicast+0x4a2/0x740
netlink_sendmsg+0x826/0xcc0
sock_sendmsg+0xc5/0x100
____sys_sendmsg+0x583/0x690
___sys_sendmsg+0xe8/0x160
__sys_sendmsg+0xbf/0x160
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f2164122d04
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
staging: vt6655: fix some erroneous memory clean-up loops
In some initialization functions of this driver, memory is allocated with
'i' acting as an index variable and increasing from 0. The commit in
"Fixes" introduces some clean-up codes in case of allocation failure,
which free memory in reverse order with 'i' decreasing to 0. However,
there are some problems:
- The case i=0 is left out. Thus memory is leaked.
- In case memory allocation fails right from the start, the memory
freeing loops will start with i=-1 and invalid memory locations will
be accessed.
One of these loops has been fixed in commit c8ff91535880 ("staging:
vt6655: fix potential memory leak"). Fix the remaining erroneous loops. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix kfd_process_device_init_vm error handling
Should only destroy the ib_mem and let process cleanup worker to free
the outstanding BOs. Reset the pointer in pdd->qpd structure, to avoid
NULL pointer access in process destroy worker.
BUG: kernel NULL pointer dereference, address: 0000000000000010
Call Trace:
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel+0x46/0xb0 [amdgpu]
kfd_process_device_destroy_cwsr_dgpu+0x40/0x70 [amdgpu]
kfd_process_destroy_pdds+0x71/0x190 [amdgpu]
kfd_process_wq_release+0x2a2/0x3b0 [amdgpu]
process_one_work+0x2a1/0x600
worker_thread+0x39/0x3d0 |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: wmt-sdmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(), besides, clk_disable_unprepare() also needs be called. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns: fix possible memory leak in hnae_ae_register()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff00c01aba2100 (size 128):
comm "systemd-udevd", pid 1259, jiffies 4294903284 (age 294.152s)
hex dump (first 32 bytes):
68 6e 61 65 30 00 00 00 18 21 ba 1a c0 00 ff ff hnae0....!......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000034783f26>] slab_post_alloc_hook+0xa0/0x3e0
[<00000000748188f2>] __kmem_cache_alloc_node+0x164/0x2b0
[<00000000ab0743e8>] __kmalloc_node_track_caller+0x6c/0x390
[<000000006c0ffb13>] kvasprintf+0x8c/0x118
[<00000000fa27bfe1>] kvasprintf_const+0x60/0xc8
[<0000000083e10ed7>] kobject_set_name_vargs+0x3c/0xc0
[<000000000b87affc>] dev_set_name+0x7c/0xa0
[<000000003fd8fe26>] hnae_ae_register+0xcc/0x190 [hnae]
[<00000000fe97edc9>] hns_dsaf_ae_init+0x9c/0x108 [hns_dsaf]
[<00000000c36ff1eb>] hns_dsaf_probe+0x548/0x748 [hns_dsaf] |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_create()
If the cifs already shutdown, we should free the xid before return,
otherwise, the xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix a race condition between login_work and the login thread
In case a malicious initiator sends some random data immediately after a
login PDU; the iscsi_target_sk_data_ready() callback will schedule the
login_work and, at the same time, the negotiation may end without clearing
the LOGIN_FLAGS_INITIAL_PDU flag (because no additional PDU exchanges are
required to complete the login).
The login has been completed but the login_work function will find the
LOGIN_FLAGS_INITIAL_PDU flag set and will never stop from rescheduling
itself; at this point, if the initiator drops the connection, the
iscsit_conn structure will be freed, login_work will dereference a released
socket structure and the kernel crashes.
BUG: kernel NULL pointer dereference, address: 0000000000000230
PF: supervisor write access in kernel mode
PF: error_code(0x0002) - not-present page
Workqueue: events iscsi_target_do_login_rx [iscsi_target_mod]
RIP: 0010:_raw_read_lock_bh+0x15/0x30
Call trace:
iscsi_target_do_login_rx+0x75/0x3f0 [iscsi_target_mod]
process_one_work+0x1e8/0x3c0
Fix this bug by forcing login_work to stop after the login has been
completed and the socket callbacks have been restored.
Add a comment to clearify the return values of iscsi_target_do_login() |
| In the Linux kernel, the following vulnerability has been resolved:
misc: tifm: fix possible memory leak in tifm_7xx1_switch_media()
If device_register() returns error in tifm_7xx1_switch_media(),
name of kobject which is allocated in dev_set_name() called in device_add()
is leaked.
Never directly free @dev after calling device_register(), even
if it returned an error! Always use put_device() to give up the
reference initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: Fix a memory leak in an error handling path
If this memdup_user() call fails, the memory allocated in a previous call
a few lines above should be freed. Otherwise it leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_usb_sdmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, besides, led_classdev_unregister() and pm_runtime_disable() also
need be called. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: init quota for 'old.inode' in 'ext4_rename'
Syzbot found the following issue:
ext4_parse_param: s_want_extra_isize=128
ext4_inode_info_init: s_want_extra_isize=32
ext4_rename: old.inode=ffff88823869a2c8 old.dir=ffff888238699828 new.inode=ffff88823869d7e8 new.dir=ffff888238699828
__ext4_mark_inode_dirty: inode=ffff888238699828 ea_isize=32 want_ea_size=128
__ext4_mark_inode_dirty: inode=ffff88823869a2c8 ea_isize=32 want_ea_size=128
ext4_xattr_block_set: inode=ffff88823869a2c8
------------[ cut here ]------------
WARNING: CPU: 13 PID: 2234 at fs/ext4/xattr.c:2070 ext4_xattr_block_set.cold+0x22/0x980
Modules linked in:
RIP: 0010:ext4_xattr_block_set.cold+0x22/0x980
RSP: 0018:ffff888227d3f3b0 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88823007a000 RCX: 0000000000000000
RDX: 0000000000000a03 RSI: 0000000000000040 RDI: ffff888230078178
RBP: 0000000000000000 R08: 000000000000002c R09: ffffed1075c7df8e
R10: ffff8883ae3efc6b R11: ffffed1075c7df8d R12: 0000000000000000
R13: ffff88823869a2c8 R14: ffff8881012e0460 R15: dffffc0000000000
FS: 00007f350ac1f740(0000) GS:ffff8883ae200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f350a6ed6a0 CR3: 0000000237456000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? ext4_xattr_set_entry+0x3b7/0x2320
? ext4_xattr_block_set+0x0/0x2020
? ext4_xattr_set_entry+0x0/0x2320
? ext4_xattr_check_entries+0x77/0x310
? ext4_xattr_ibody_set+0x23b/0x340
ext4_xattr_move_to_block+0x594/0x720
ext4_expand_extra_isize_ea+0x59a/0x10f0
__ext4_expand_extra_isize+0x278/0x3f0
__ext4_mark_inode_dirty.cold+0x347/0x410
ext4_rename+0xed3/0x174f
vfs_rename+0x13a7/0x2510
do_renameat2+0x55d/0x920
__x64_sys_rename+0x7d/0xb0
do_syscall_64+0x3b/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
As 'ext4_rename' will modify 'old.inode' ctime and mark inode dirty,
which may trigger expand 'extra_isize' and allocate block. If inode
didn't init quota will lead to warning. To solve above issue, init
'old.inode' firstly in 'ext4_rename'. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix null-ptr-deref in ext4_write_info
I caught a null-ptr-deref bug as follows:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339
RIP: 0010:ext4_write_info+0x53/0x1b0
[...]
Call Trace:
dquot_writeback_dquots+0x341/0x9a0
ext4_sync_fs+0x19e/0x800
__sync_filesystem+0x83/0x100
sync_filesystem+0x89/0xf0
generic_shutdown_super+0x79/0x3e0
kill_block_super+0xa1/0x110
deactivate_locked_super+0xac/0x130
deactivate_super+0xb6/0xd0
cleanup_mnt+0x289/0x400
__cleanup_mnt+0x16/0x20
task_work_run+0x11c/0x1c0
exit_to_user_mode_prepare+0x203/0x210
syscall_exit_to_user_mode+0x5b/0x3a0
do_syscall_64+0x59/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
==================================================================
Above issue may happen as follows:
-------------------------------------
exit_to_user_mode_prepare
task_work_run
__cleanup_mnt
cleanup_mnt
deactivate_super
deactivate_locked_super
kill_block_super
generic_shutdown_super
shrink_dcache_for_umount
dentry = sb->s_root
sb->s_root = NULL <--- Here set NULL
sync_filesystem
__sync_filesystem
sb->s_op->sync_fs > ext4_sync_fs
dquot_writeback_dquots
sb->dq_op->write_info > ext4_write_info
ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2)
d_inode(sb->s_root)
s_root->d_inode <--- Null pointer dereference
To solve this problem, we use ext4_journal_start_sb directly
to avoid s_root being used. |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix possible name leaks when rio_add_device() fails
Patch series "rapidio: fix three possible memory leaks".
This patchset fixes three name leaks in error handling.
- patch #1 fixes two name leaks while rio_add_device() fails.
- patch #2 fixes a name leak while rio_register_mport() fails.
This patch (of 2):
If rio_add_device() returns error, the name allocated by dev_set_name()
need be freed. It should use put_device() to give up the reference in the
error path, so that the name can be freed in kobject_cleanup(), and the
'rdev' can be freed in rio_release_dev(). |
| In the Linux kernel, the following vulnerability has been resolved:
floppy: Fix memory leak in do_floppy_init()
A memory leak was reported when floppy_alloc_disk() failed in
do_floppy_init().
unreferenced object 0xffff888115ed25a0 (size 8):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 8 bytes):
00 ac 67 5b 81 88 ff ff ..g[....
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<00000000a87bfa9e>] blk_mq_realloc_tag_set_tags.part.0+0x6f/0x180
[<000000006f02e8b1>] blk_mq_alloc_tag_set+0x573/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810fc30540 (size 32):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<000000006b91eab4>] blk_mq_alloc_tag_set+0x393/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
If the floppy_alloc_disk() failed, disks of current drive will not be set,
thus the lastest allocated set->tag cannot be freed in the error handling
path. A simple call graph shown as below:
floppy_module_init()
floppy_init()
do_floppy_init()
for (drive = 0; drive < N_DRIVE; drive++)
blk_mq_alloc_tag_set()
blk_mq_alloc_tag_set_tags()
blk_mq_realloc_tag_set_tags() # set->tag allocated
floppy_alloc_disk()
blk_mq_alloc_disk() # error occurred, disks failed to allocated
->out_put_disk:
for (drive = 0; drive < N_DRIVE; drive++)
if (!disks[drive][0]) # the last disks is not set and loop break
break;
blk_mq_free_tag_set() # the latest allocated set->tag leaked
Fix this problem by free the set->tag of current drive before jump to
error handling path.
[efremov: added stable list, changed title] |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix oops during encryption
When running xfstests against Azure the following oops occurred on an
arm64 system
Unable to handle kernel write to read-only memory at virtual address
ffff0001221cf000
Mem abort info:
ESR = 0x9600004f
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x0f: level 3 permission fault
Data abort info:
ISV = 0, ISS = 0x0000004f
CM = 0, WnR = 1
swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000
[ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003,
pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787
Internal error: Oops: 9600004f [#1] PREEMPT SMP
...
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
pc : __memcpy+0x40/0x230
lr : scatterwalk_copychunks+0xe0/0x200
sp : ffff800014e92de0
x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008
x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008
x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000
x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014
x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058
x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590
x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580
x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005
x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001
x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000
Call trace:
__memcpy+0x40/0x230
scatterwalk_map_and_copy+0x98/0x100
crypto_ccm_encrypt+0x150/0x180
crypto_aead_encrypt+0x2c/0x40
crypt_message+0x750/0x880
smb3_init_transform_rq+0x298/0x340
smb_send_rqst.part.11+0xd8/0x180
smb_send_rqst+0x3c/0x100
compound_send_recv+0x534/0xbc0
smb2_query_info_compound+0x32c/0x440
smb2_set_ea+0x438/0x4c0
cifs_xattr_set+0x5d4/0x7c0
This is because in scatterwalk_copychunks(), we attempted to write to
a buffer (@sign) that was allocated in the stack (vmalloc area) by
crypt_message() and thus accessing its remaining 8 (x2) bytes ended up
crossing a page boundary.
To simply fix it, we could just pass @sign kmalloc'd from
crypt_message() and then we're done. Luckily, we don't seem to pass
any other vmalloc'd buffers in smb_rqst::rq_iov...
Instead, let's map the correct pages and offsets from vmalloc buffers
as well in cifs_sg_set_buf() and then avoiding such oopses. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vimc: Fix wrong function called when vimc_init() fails
In vimc_init(), when platform_driver_register(&vimc_pdrv) fails,
platform_driver_unregister(&vimc_pdrv) is wrongly called rather than
platform_device_unregister(&vimc_pdev), which causes kernel warning:
Unexpected driver unregister!
WARNING: CPU: 1 PID: 14517 at drivers/base/driver.c:270 driver_unregister+0x8f/0xb0
RIP: 0010:driver_unregister+0x8f/0xb0
Call Trace:
<TASK>
vimc_init+0x7d/0x1000 [vimc]
do_one_initcall+0xd0/0x4e0
do_init_module+0x1cf/0x6b0
load_module+0x65c2/0x7820 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: avoid hci_dev_test_and_set_flag() in mgmt_init_hdev()
syzbot is again reporting attempt to cancel uninitialized work
at mgmt_index_removed() [1], for setting of HCI_MGMT flag from
mgmt_init_hdev() from hci_mgmt_cmd() from hci_sock_sendmsg() can
race with testing of HCI_MGMT flag from mgmt_index_removed() from
hci_sock_bind() due to lack of serialization via hci_dev_lock().
Since mgmt_init_hdev() is called with mgmt_chan_list_lock held, we can
safely split hci_dev_test_and_set_flag() into hci_dev_test_flag() and
hci_dev_set_flag(). Thus, in order to close this race, set HCI_MGMT flag
after INIT_DELAYED_WORK() completed.
This is a local fix based on mgmt_chan_list_lock. Lack of serialization
via hci_dev_lock() might be causing different race conditions somewhere
else. But a global fix based on hci_dev_lock() should deserve a future
patch. |
| By exploiting the defVals parameter, attackers could bypass field‑level access checks during record creation in the TYPO3 backend. This gave them the ability to insert arbitrary data into prohibited exclude fields of a database table for which the user already has write permission for a reduced set of fields. This issue affects TYPO3 CMS versions 10.0.0-10.4.54, 11.0.0-11.5.48, 12.0.0-12.4.40, 13.0.0-13.4.22 and 14.0.0-14.0.1. |
| Backend users with access to the redirects module and write permission on the sys_redirect table were able to read, create, and modify any redirect record without restriction to the user’s own file-mounts or web-mounts. This allowed attackers to insert or alter redirects pointing to arbitrary URLs – facilitating phishing or other malicious redirect attacks. This issue affects TYPO3 CMS versions 10.0.0-10.4.54, 11.0.0-11.5.48, 12.0.0-12.4.40, 13.0.0-13.4.22 and 14.0.0-14.0.1. |