| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Istio is an open platform to connect, manage, and secure microservices. In affected versions the Istio control plane, istiod, is vulnerable to a request processing error, allowing a malicious attacker that sends a specially crafted message which results in the control plane crashing when the validating webhook for a cluster is exposed publicly. This endpoint is served over TLS port 15017, but does not require any authentication from the attacker. For simple installations, Istiod is typically only reachable from within the cluster, limiting the blast radius. However, for some deployments, especially [external istiod](https://istio.io/latest/docs/setup/install/external-controlplane/) topologies, this port is exposed over the public internet. This issue has been patched in versions 1.13.2, 1.12.5 and 1.11.8. Users are advised to upgrade. Users unable to upgrade should disable access to a validating webhook that is exposed to the public internet or restrict the set of IP addresses that can query it to a set of known, trusted entities. |
| Waitress is a Web Server Gateway Interface server for Python 2 and 3. When using Waitress versions 2.1.0 and prior behind a proxy that does not properly validate the incoming HTTP request matches the RFC7230 standard, Waitress and the frontend proxy may disagree on where one request starts and where it ends. This would allow requests to be smuggled via the front-end proxy to waitress and later behavior. There are two classes of vulnerability that may lead to request smuggling that are addressed by this advisory: The use of Python's `int()` to parse strings into integers, leading to `+10` to be parsed as `10`, or `0x01` to be parsed as `1`, where as the standard specifies that the string should contain only digits or hex digits; and Waitress does not support chunk extensions, however it was discarding them without validating that they did not contain illegal characters. This vulnerability has been patched in Waitress 2.1.1. A workaround is available. When deploying a proxy in front of waitress, turning on any and all functionality to make sure that the request matches the RFC7230 standard. Certain proxy servers may not have this functionality though and users are encouraged to upgrade to the latest version of waitress instead. |
| Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. Prior to version 1.3.0, RSA PKCS#1 v1.5 signature verification code is lenient in checking the digest algorithm structure. This can allow a crafted structure that steals padding bytes and uses unchecked portion of the PKCS#1 encoded message to forge a signature when a low public exponent is being used. The issue has been addressed in `node-forge` version 1.3.0. There are currently no known workarounds. |
| Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. Prior to version 1.3.0, RSA PKCS#1 v1.5 signature verification code does not properly check `DigestInfo` for a proper ASN.1 structure. This can lead to successful verification with signatures that contain invalid structures but a valid digest. The issue has been addressed in `node-forge` version 1.3.0. There are currently no known workarounds. |
| Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. Prior to version 1.3.0, RSA PKCS#1 v1.5 signature verification code does not check for tailing garbage bytes after decoding a `DigestInfo` ASN.1 structure. This can allow padding bytes to be removed and garbage data added to forge a signature when a low public exponent is being used. The issue has been addressed in `node-forge` version 1.3.0. There are currently no known workarounds. |
| Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Argo CD starting with version 1.3.0 but before versions 2.1.11, 2.2.6, and 2.3.0 is vulnerable to a path traversal bug, compounded by an improper access control bug, allowing a malicious user with read-only repository access to leak sensitive files from Argo CD's repo-server. A malicious Argo CD user who has been granted `get` access for a repository containing a Helm chart can craft an API request to the `/api/v1/repositories/{repo_url}/appdetails` endpoint to leak the contents of out-of-bounds files from the repo-server. The malicious payload would reference an out-of-bounds file, and the contents of that file would be returned as part of the response. Contents from a non-YAML file may be returned as part of an error message. The attacker would have to know or guess the location of the target file. Sensitive files which could be leaked include files from other Applications' source repositories or any secrets which have been mounted as files on the repo-server. This vulnerability is patched in Argo CD versions 2.1.11, 2.2.6, and 2.3.0. The patches prevent path traversal and limit access to users who either A) have been granted Application `create` privileges or B) have been granted Application `get` privileges and are requesting details for a `repo_url` that has already been used for the given Application. There are currently no known workarounds. |
| Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Argo CD starting with version 1.5.0 but before versions 2.1.11, 2.2.6, and 2.3.0 is vulnerable to a path traversal vulnerability, allowing a malicious user with read/write access to leak sensitive files from Argo CD's repo-server. A malicious Argo CD user who has been granted `create` or `update` access to Applications can leak the contents of any text file on the repo-server. By crafting a malicious Helm chart and using it in an Application, the attacker can retrieve the sensitive file's contents either as part of the generated manifests or in an error message. The attacker would have to know or guess the location of the target file. Sensitive files which could be leaked include files from another Application's source repositories or any secrets which have been mounted as files on the repo-server. This vulnerability is patched in Argo CD versions 2.1.11, 2.2.6, and 2.3.0. The problem can be mitigated by avoiding storing secrets in git, avoiding mounting secrets as files on the repo-server, avoiding decrypting secrets into files on the repo-server, and carefully limiting who can `create` or `update` Applications. |
| Puma is a simple, fast, multi-threaded, parallel HTTP 1.1 server for Ruby/Rack applications. When using Puma behind a proxy that does not properly validate that the incoming HTTP request matches the RFC7230 standard, Puma and the frontend proxy may disagree on where a request starts and ends. This would allow requests to be smuggled via the front-end proxy to Puma. The vulnerability has been fixed in 5.6.4 and 4.3.12. Users are advised to upgrade as soon as possible. Workaround: when deploying a proxy in front of Puma, turning on any and all functionality to make sure that the request matches the RFC7230 standard. |
| Twisted is an event-based framework for internet applications, supporting Python 3.6+. Prior to version 22.4.0rc1, the Twisted Web HTTP 1.1 server, located in the `twisted.web.http` module, parsed several HTTP request constructs more leniently than permitted by RFC 7230. This non-conformant parsing can lead to desync if requests pass through multiple HTTP parsers, potentially resulting in HTTP request smuggling. Users who may be affected use Twisted Web's HTTP 1.1 server and/or proxy and also pass requests through a different HTTP server and/or proxy. The Twisted Web client is not affected. The HTTP 2.0 server uses a different parser, so it is not affected. The issue has been addressed in Twisted 22.4.0rc1. Two workarounds are available: Ensure any vulnerabilities in upstream proxies have been addressed, such as by upgrading them; or filter malformed requests by other means, such as configuration of an upstream proxy. |
| Rsyslog is a rocket-fast system for log processing. Modules for TCP syslog reception have a potential heap buffer overflow when octet-counted framing is used. This can result in a segfault or some other malfunction. As of our understanding, this vulnerability can not be used for remote code execution. But there may still be a slight chance for experts to do that. The bug occurs when the octet count is read. While there is a check for the maximum number of octets, digits are written to a heap buffer even when the octet count is over the maximum, This can be used to overrun the memory buffer. However, once the sequence of digits stop, no additional characters can be added to the buffer. In our opinion, this makes remote exploits impossible or at least highly complex. Octet-counted framing is one of two potential framing modes. It is relatively uncommon, but enabled by default on receivers. Modules `imtcp`, `imptcp`, `imgssapi`, and `imhttp` are used for regular syslog message reception. It is best practice not to directly expose them to the public. When this practice is followed, the risk is considerably lower. Module `imdiag` is a diagnostics module primarily intended for testbench runs. We do not expect it to be present on any production installation. Octet-counted framing is not very common. Usually, it needs to be specifically enabled at senders. If users do not need it, they can turn it off for the most important modules. This will mitigate the vulnerability. |
| go-tuf is a Go implementation of The Update Framework (TUF). go-tuf does not correctly implement the client workflow for updating the metadata files for roles other than the root role. Specifically, checks for rollback attacks are not implemented correctly meaning an attacker can cause clients to install software that is older than the software which the client previously knew to be available, and may include software with known vulnerabilities. In more detail, the client code of go-tuf has several issues in regards to preventing rollback attacks: 1. It does not take into account the content of any previously trusted metadata, if available, before proceeding with updating roles other than the root role (i.e., steps 5.4.3.1 and 5.5.5 of the detailed client workflow). This means that any form of version verification done on the newly-downloaded metadata is made using the default value of zero, which always passes. 2. For both timestamp and snapshot roles, go-tuf saves these metadata files as trusted before verifying if the version of the metafiles they refer to is correct (i.e., steps 5.5.4 and 5.6.4 of the detailed client workflow). A fix is available in version 0.3.0 or newer. No workarounds are known for this issue apart from upgrading. |
| runc is a CLI tool for spawning and running containers on Linux according to the OCI specification. A bug was found in runc prior to version 1.1.2 where `runc exec --cap` created processes with non-empty inheritable Linux process capabilities, creating an atypical Linux environment and enabling programs with inheritable file capabilities to elevate those capabilities to the permitted set during execve(2). This bug did not affect the container security sandbox as the inheritable set never contained more capabilities than were included in the container's bounding set. This bug has been fixed in runc 1.1.2. This fix changes `runc exec --cap` behavior such that the additional capabilities granted to the process being executed (as specified via `--cap` arguments) do not include inheritable capabilities. In addition, `runc spec` is changed to not set any inheritable capabilities in the created example OCI spec (`config.json`) file. |
| Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Argo CD starting with version 0.7.0 and prior to versions 2.1.15m 2.2.9, and 2.3.4 is vulnerable to a symlink following bug allowing a malicious user with repository write access to leak sensitive files from Argo CD's repo-server. A malicious Argo CD user with write access for a repository which is (or may be) used in a directory-type Application may commit a symlink which points to an out-of-bounds file. Sensitive files which could be leaked include manifest files from other Applications' source repositories (potentially decrypted files, if you are using a decryption plugin) or any JSON-formatted secrets which have been mounted as files on the repo-server. A patch for this vulnerability has been released in Argo CD versions 2.3.4, 2.2.9, and 2.1.15. Users of versions 2.3.0 or above who do not have any Jsonnet/directory-type Applications may disable the Jsonnet/directory config management tool as a workaround. |
| Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. A vulnerability was found in Argo CD prior to versions 2.3.4, 2.2.9, and 2.1.15 that allows an attacker to spoof error messages on the login screen when single sign on (SSO) is enabled. In order to exploit this vulnerability, an attacker would have to trick the victim to visit a specially crafted URL which contains the message to be displayed. As far as the research of the Argo CD team concluded, it is not possible to specify any active content (e.g. Javascript) or other HTML fragments (e.g. clickable links) in the spoofed message. A patch for this vulnerability has been released in Argo CD versions 2.3.4, 2.2.9, and 2.1.15. There are currently no known workarounds. |
| Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. A critical vulnerability has been discovered in Argo CD starting with version 1.4.0 and prior to versions 2.1.15, 2.2.9, and 2.3.4 which would allow unauthenticated users to impersonate as any Argo CD user or role, including the `admin` user, by sending a specifically crafted JSON Web Token (JWT) along with the request. In order for this vulnerability to be exploited, anonymous access to the Argo CD instance must have been enabled. In a default Argo CD installation, anonymous access is disabled. The vulnerability can be exploited to impersonate as any user or role, including the built-in `admin` account regardless of whether it is enabled or disabled. Also, the attacker does not need an account on the Argo CD instance in order to exploit this. If anonymous access to the instance is enabled, an attacker can escalate their privileges, effectively allowing them to gain the same privileges on the cluster as the Argo CD instance, which is cluster admin in a default installation. This will allow the attacker to create, manipulate and delete any resource on the cluster. They may also exfiltrate data by deploying malicious workloads with elevated privileges, thus bypassing any redaction of sensitive data otherwise enforced by the Argo CD API. A patch for this vulnerability has been released in Argo CD versions 2.3.4, 2.2.9, and 2.1.15. As a workaround, one may disable anonymous access, but upgrading to a patched version is preferable. |
| Envoy is a cloud-native high-performance proxy. Versions of envoy prior to 1.22.1 are subject to a segmentation fault in the GrpcHealthCheckerImpl. Envoy can perform various types of upstream health checking. One of them uses gRPC. Envoy also has a feature which can “hold” (prevent removal) upstream hosts obtained via service discovery until configured active health checking fails. If an attacker controls an upstream host and also controls service discovery of that host (via DNS, the EDS API, etc.), an attacker can crash Envoy by forcing removal of the host from service discovery, and then failing the gRPC health check request. This will crash Envoy via a null pointer dereference. Users are advised to upgrade to resolve this vulnerability. Users unable to upgrade may disable gRPC health checking and/or replace it with a different health checking type as a mitigation. |
| Envoy is a cloud-native high-performance proxy. In versions prior to 1.22.1 the OAuth filter would try to invoke the remaining filters in the chain after emitting a local response, which triggers an ASSERT() in newer versions and corrupts memory on earlier versions. continueDecoding() shouldn’t ever be called from filters after a local reply has been sent. Users are advised to upgrade. There are no known workarounds for this issue. |
| Envoy is a cloud-native high-performance proxy. In versions prior to 1.22.1 the OAuth filter implementation does not include a mechanism for validating access tokens, so by design when the HMAC signed cookie is missing a full authentication flow should be triggered. However, the current implementation assumes that access tokens are always validated thus allowing access in the presence of any access token attached to the request. Users are advised to upgrade. There is no known workaround for this issue. |
| semantic-release is an open source npm package for automated version management and package publishing. In affected versions secrets that would normally be masked by semantic-release can be accidentally disclosed if they contain characters that are excluded from uri encoding by `encodeURI`. Occurrence is further limited to execution contexts where push access to the related repository is not available without modifying the repository url to inject credentials. Users are advised to upgrade. Users unable to upgrade should ensure that secrets that do not contain characters that are excluded from encoding with `encodeURI` when included in a URL are already masked properly. |
| Istio is an open platform to connect, manage, and secure microservices. In affected versions ill-formed headers sent to Envoy in certain configurations can lead to unexpected memory access resulting in undefined behavior or crashing. Users are most likely at risk if they have an Istio ingress Gateway exposed to external traffic. This vulnerability has been resolved in versions 1.12.8, 1.13.5, and 1.14.1. Users are advised to upgrade. There are no known workarounds for this issue. |