| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was found in the libsoup package. This flaw stems from its failure to correctly verify the termination of multipart HTTP messages. This can allow a remote attacker to send a specially crafted multipart HTTP body, causing the libsoup-consuming server to read beyond its allocated memory boundaries (out-of-bounds read). |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix oops in write-retry from mis-resetting the subreq iterator
Fix the resetting of the subrequest iterator in netfs_retry_write_stream()
to use the iterator-reset function as the iterator may have been shortened
by a previous retry. In such a case, the amount of data to be written by
the subrequest is not "subreq->len" but "subreq->len -
subreq->transferred".
Without this, KASAN may see an error in iov_iter_revert():
BUG: KASAN: slab-out-of-bounds in iov_iter_revert lib/iov_iter.c:633 [inline]
BUG: KASAN: slab-out-of-bounds in iov_iter_revert+0x443/0x5a0 lib/iov_iter.c:611
Read of size 4 at addr ffff88802912a0b8 by task kworker/u32:7/1147
CPU: 1 UID: 0 PID: 1147 Comm: kworker/u32:7 Not tainted 6.15.0-rc6-syzkaller-00052-g9f35e33144ae #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events_unbound netfs_write_collection_worker
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
iov_iter_revert lib/iov_iter.c:633 [inline]
iov_iter_revert+0x443/0x5a0 lib/iov_iter.c:611
netfs_retry_write_stream fs/netfs/write_retry.c:44 [inline]
netfs_retry_writes+0x166d/0x1a50 fs/netfs/write_retry.c:231
netfs_collect_write_results fs/netfs/write_collect.c:352 [inline]
netfs_write_collection_worker+0x23fd/0x3830 fs/netfs/write_collect.c:374
process_one_work+0x9cf/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK> |
| An out-of-bounds read flaw was found in Shim when it tried to validate the SBAT information. This issue may expose sensitive data during the system's boot phase. |
| A flaw was found in the MZ binary format in Shim. An out-of-bounds read may occur, leading to a crash or possible exposure of sensitive data during the system's boot phase. |
| An out-of-bounds read flaw was found in Shim due to the lack of proper boundary verification during the load of a PE binary. This flaw allows an attacker to load a crafted PE binary, triggering the issue and crashing Shim, resulting in a denial of service. |
| An out-of-bounds read vulnerability was found in Netfilter Connection Tracking (conntrack) in the Linux kernel. This flaw allows a remote user to disclose sensitive information via the DCCP protocol. |
| A flaw was found in glibc. When the getaddrinfo function is called with the AF_UNSPEC address family and the system is configured with no-aaaa mode via /etc/resolv.conf, a DNS response via TCP larger than 2048 bytes can potentially disclose stack contents through the function returned address data, and may cause a crash. |
| A buffer overflow flaw was found in base/gdevdevn.c:1973 in devn_pcx_write_rle() in ghostscript. This issue may allow a local attacker to cause a denial of service via outputting a crafted PDF file for a DEVN device with gs. |
| A heap-based buffer overflow issue was found in ImageMagick's PushCharPixel() function in quantum-private.h. This issue may allow a local attacker to trick the user into opening a specially crafted file, triggering an out-of-bounds read error and allowing an application to crash, resulting in a denial of service. |
| An out-of-bounds read vulnerability was found in Samba due to insufficient length checks in winbindd_pam_auth_crap.c. When performing NTLM authentication, the client replies to cryptographic challenges back to the server. These replies have variable lengths, and Winbind fails to check the lan manager response length. When Winbind is used for NTLM authentication, a maliciously crafted request can trigger an out-of-bounds read in Winbind, possibly resulting in a crash. |
| A flaw was found in xorg-server. Querying or changing XKB button actions such as moving from a touchpad to a mouse can result in out-of-bounds memory reads and writes. This may allow local privilege escalation or possible remote code execution in cases where X11 forwarding is involved. |
| An out-of-bounds read vulnerability was found in DPDK's Vhost library checksum offload feature. This issue enables an untrusted or compromised guest to crash the hypervisor's vSwitch by forging Virtio descriptors to cause out-of-bounds reads. This flaw allows an attacker with a malicious VM using a virtio driver to cause the vhost-user side to crash by sending a packet with a Tx checksum offload request and an invalid csum_start offset. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix invalid access to memory
In ath12k_dp_rx_msdu_coalesce(), rxcb is fetched from skb and boolean
is_continuation is part of rxcb.
Currently, after freeing the skb, the rxcb->is_continuation accessed
again which is wrong since the memory is already freed.
This might lead use-after-free error.
Hence, fix by locally defining bool is_continuation from rxcb,
so that after freeing skb, is_continuation can be used.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/rmap: fix potential out-of-bounds page table access during batched unmap
As pointed out by David[1], the batched unmap logic in
try_to_unmap_one() may read past the end of a PTE table when a large
folio's PTE mappings are not fully contained within a single page
table.
While this scenario might be rare, an issue triggerable from userspace
must be fixed regardless of its likelihood. This patch fixes the
out-of-bounds access by refactoring the logic into a new helper,
folio_unmap_pte_batch().
The new helper correctly calculates the safe batch size by capping the
scan at both the VMA and PMD boundaries. To simplify the code, it also
supports partial batching (i.e., any number of pages from 1 up to the
calculated safe maximum), as there is no strong reason to special-case
for fully mapped folios. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx: Fix an out-of-bounds access in dispmix_csr_clk_dev_data
When num_parents is 4, __clk_register() occurs an out-of-bounds
when accessing parent_names member. Use ARRAY_SIZE() instead of
hardcode number here.
BUG: KASAN: global-out-of-bounds in __clk_register+0x1844/0x20d8
Read of size 8 at addr ffff800086988e78 by task kworker/u24:3/59
Hardware name: NXP i.MX95 19X19 board (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x94/0xec
show_stack+0x18/0x24
dump_stack_lvl+0x8c/0xcc
print_report+0x398/0x5fc
kasan_report+0xd4/0x114
__asan_report_load8_noabort+0x20/0x2c
__clk_register+0x1844/0x20d8
clk_hw_register+0x44/0x110
__clk_hw_register_mux+0x284/0x3a8
imx95_bc_probe+0x4f4/0xa70 |
| In the Linux kernel, the following vulnerability has been resolved:
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fb-helper: Fix out-of-bounds access
Clip memory range to screen-buffer size to avoid out-of-bounds access
in fbdev deferred I/O's damage handling.
Fbdev's deferred I/O can only track pages. From the range of pages, the
damage handler computes the clipping rectangle for the display update.
If the fbdev screen buffer ends near the beginning of a page, that page
could contain more scanlines. The damage handler would then track these
non-existing scanlines as dirty and provoke an out-of-bounds access
during the screen update. Hence, clip the maximum memory range to the
size of the screen buffer.
While at it, rename the variables min/max to min_off/max_off in
drm_fb_helper_deferred_io(). This avoids confusion with the macros of
the same name. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: arm64/poly1305 - fix a read out-of-bound
A kasan error was reported during fuzzing:
BUG: KASAN: slab-out-of-bounds in neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon]
Read of size 4 at addr ffff0010e293f010 by task syz-executor.5/1646715
CPU: 4 PID: 1646715 Comm: syz-executor.5 Kdump: loaded Not tainted 5.10.0.aarch64 #1
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.59 01/31/2019
Call trace:
dump_backtrace+0x0/0x394
show_stack+0x34/0x4c arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x158/0x1e4 lib/dump_stack.c:118
print_address_description.constprop.0+0x68/0x204 mm/kasan/report.c:387
__kasan_report+0xe0/0x140 mm/kasan/report.c:547
kasan_report+0x44/0xe0 mm/kasan/report.c:564
check_memory_region_inline mm/kasan/generic.c:187 [inline]
__asan_load4+0x94/0xd0 mm/kasan/generic.c:252
neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon]
neon_poly1305_do_update+0x6c/0x15c [poly1305_neon]
neon_poly1305_update+0x9c/0x1c4 [poly1305_neon]
crypto_shash_update crypto/shash.c:131 [inline]
shash_finup_unaligned+0x84/0x15c crypto/shash.c:179
crypto_shash_finup+0x8c/0x140 crypto/shash.c:193
shash_digest_unaligned+0xb8/0xe4 crypto/shash.c:201
crypto_shash_digest+0xa4/0xfc crypto/shash.c:217
crypto_shash_tfm_digest+0xb4/0x150 crypto/shash.c:229
essiv_skcipher_setkey+0x164/0x200 [essiv]
crypto_skcipher_setkey+0xb0/0x160 crypto/skcipher.c:612
skcipher_setkey+0x3c/0x50 crypto/algif_skcipher.c:305
alg_setkey+0x114/0x2a0 crypto/af_alg.c:220
alg_setsockopt+0x19c/0x210 crypto/af_alg.c:253
__sys_setsockopt+0x190/0x2e0 net/socket.c:2123
__do_sys_setsockopt net/socket.c:2134 [inline]
__se_sys_setsockopt net/socket.c:2131 [inline]
__arm64_sys_setsockopt+0x78/0x94 net/socket.c:2131
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall+0x64/0x100 arch/arm64/kernel/syscall.c:48
el0_svc_common.constprop.0+0x220/0x230 arch/arm64/kernel/syscall.c:155
do_el0_svc+0xb4/0xd4 arch/arm64/kernel/syscall.c:217
el0_svc+0x24/0x3c arch/arm64/kernel/entry-common.c:353
el0_sync_handler+0x160/0x164 arch/arm64/kernel/entry-common.c:369
el0_sync+0x160/0x180 arch/arm64/kernel/entry.S:683
This error can be reproduced by the following code compiled as ko on a
system with kasan enabled:
#include <linux/module.h>
#include <linux/crypto.h>
#include <crypto/hash.h>
#include <crypto/poly1305.h>
char test_data[] = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e";
int init(void)
{
struct crypto_shash *tfm = NULL;
char *data = NULL, *out = NULL;
tfm = crypto_alloc_shash("poly1305", 0, 0);
data = kmalloc(POLY1305_KEY_SIZE - 1, GFP_KERNEL);
out = kmalloc(POLY1305_DIGEST_SIZE, GFP_KERNEL);
memcpy(data, test_data, POLY1305_KEY_SIZE - 1);
crypto_shash_tfm_digest(tfm, data, POLY1305_KEY_SIZE - 1, out);
kfree(data);
kfree(out);
return 0;
}
void deinit(void)
{
}
module_init(init)
module_exit(deinit)
MODULE_LICENSE("GPL");
The root cause of the bug sits in neon_poly1305_blocks. The logic
neon_poly1305_blocks() performed is that if it was called with both s[]
and r[] uninitialized, it will first try to initialize them with the
data from the first "block" that it believed to be 32 bytes in length.
First 16 bytes are used as the key and the next 16 bytes for s[]. This
would lead to the aforementioned read out-of-bound. However, after
calling poly1305_init_arch(), only 16 bytes were deducted from the input
and s[] is initialized yet again with the following 16 bytes. The second
initialization of s[] is certainly redundent which indicates that the
first initialization should be for r[] only.
This patch fixes the issue by calling poly1305_init_arm64() instead o
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: imx-jpeg: Align upwards buffer size
The hardware can support any image size WxH,
with arbitrary W (image width) and H (image height) dimensions.
Align upwards buffer size for both encoder and decoder.
and leave the picture resolution unchanged.
For decoder, the risk of memory out of bounds can be avoided.
For both encoder and decoder, the driver will lift the limitation of
resolution alignment.
For example, the decoder can support jpeg whose resolution is 227x149
the encoder can support nv12 1080P, won't change it to 1920x1072. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: Add boundary check in put_entry()
Just like next_entry(), boundary check is necessary to prevent memory
out-of-bound access. |