| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix DPE OoB read
Fix an out-of-bounds DPE read, limit the number of processed DPEs to
the amount that fits into the fixed-size NDP16 header. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fixed hclge_fetch_pf_reg accesses bar space out of bounds issue
The TQP BAR space is divided into two segments. TQPs 0-1023 and TQPs
1024-1279 are in different BAR space addresses. However,
hclge_fetch_pf_reg does not distinguish the tqp space information when
reading the tqp space information. When the number of TQPs is greater
than 1024, access bar space overwriting occurs.
The problem of different segments has been considered during the
initialization of tqp.io_base. Therefore, tqp.io_base is directly used
when the queue is read in hclge_fetch_pf_reg.
The error message:
Unable to handle kernel paging request at virtual address ffff800037200000
pc : hclge_fetch_pf_reg+0x138/0x250 [hclge]
lr : hclge_get_regs+0x84/0x1d0 [hclge]
Call trace:
hclge_fetch_pf_reg+0x138/0x250 [hclge]
hclge_get_regs+0x84/0x1d0 [hclge]
hns3_get_regs+0x2c/0x50 [hns3]
ethtool_get_regs+0xf4/0x270
dev_ethtool+0x674/0x8a0
dev_ioctl+0x270/0x36c
sock_do_ioctl+0x110/0x2a0
sock_ioctl+0x2ac/0x530
__arm64_sys_ioctl+0xa8/0x100
invoke_syscall+0x4c/0x124
el0_svc_common.constprop.0+0x140/0x15c
do_el0_svc+0x30/0xd0
el0_svc+0x1c/0x2c
el0_sync_handler+0xb0/0xb4
el0_sync+0x168/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix off by one in mt7925_load_clc()
This comparison should be >= instead of > to prevent an out of bounds
read and write. |
| In the Linux kernel, the following vulnerability has been resolved:
rtc: tps6594: Fix integer overflow on 32bit systems
The problem is this multiply in tps6594_rtc_set_offset()
tmp = offset * TICKS_PER_HOUR;
The "tmp" variable is an s64 but "offset" is a long in the
(-277774)-277774 range. On 32bit systems a long can hold numbers up to
approximately two billion. The number of TICKS_PER_HOUR is really large,
(32768 * 3600) or roughly a hundred million. When you start multiplying
by a hundred million it doesn't take long to overflow the two billion
mark.
Probably the safest way to fix this is to change the type of
TICKS_PER_HOUR to long long because it's such a large number. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: spinand: winbond: Fix 512GW, 01GW, 01JW and 02JW ECC information
These four chips:
* W25N512GW
* W25N01GW
* W25N01JW
* W25N02JW
all require a single bit of ECC strength and thus feature an on-die
Hamming-like ECC engine. There is no point in filling a ->get_status()
callback for them because the main ECC status bytes are located in
standard places, and retrieving the number of bitflips in case of
corrected chunk is both useless and unsupported (if there are bitflips,
then there is 1 at most, so no need to query the chip for that).
Without this change, a kernel warning triggers every time a bit flips. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix blksize < PAGE_SIZE for file-backed mounts
Adjust sb->s_blocksize{,_bits} directly for file-backed
mounts when the fs block size is smaller than PAGE_SIZE.
Previously, EROFS used sb_set_blocksize(), which caused
a panic if bdev-backed mounts is not used. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Terminate the erratum_1386_microcode array
The erratum_1386_microcode array requires an empty entry at the end.
Otherwise x86_match_cpu_with_stepping() will continue iterate the array after
it ended.
Add an empty entry to erratum_1386_microcode to its end. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix OOB in binder_add_freeze_work()
In binder_add_freeze_work() we iterate over the proc->nodes with the
proc->inner_lock held. However, this lock is temporarily dropped to
acquire the node->lock first (lock nesting order). This can race with
binder_deferred_release() which removes the nodes from the proc->nodes
rbtree and adds them into binder_dead_nodes list. This leads to a broken
iteration in binder_add_freeze_work() as rb_next() will use data from
binder_dead_nodes, triggering an out-of-bounds access:
==================================================================
BUG: KASAN: global-out-of-bounds in rb_next+0xfc/0x124
Read of size 8 at addr ffffcb84285f7170 by task freeze/660
CPU: 8 UID: 0 PID: 660 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #18
Hardware name: linux,dummy-virt (DT)
Call trace:
rb_next+0xfc/0x124
binder_add_freeze_work+0x344/0x534
binder_ioctl+0x1e70/0x25ac
__arm64_sys_ioctl+0x124/0x190
The buggy address belongs to the variable:
binder_dead_nodes+0x10/0x40
[...]
==================================================================
This is possible because proc->nodes (rbtree) and binder_dead_nodes
(list) share entries in binder_node through a union:
struct binder_node {
[...]
union {
struct rb_node rb_node;
struct hlist_node dead_node;
};
Fix the race by checking that the proc is still alive. If not, simply
break out of the iteration. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: kvm: Fix out-of-bounds array access
In kvm_riscv_vcpu_sbi_init() the entry->ext_idx can contain an
out-of-bound index. This is used as a special marker for the base
extensions, that cannot be disabled. However, when traversing the
extensions, that special marker is not checked prior indexing the
array.
Add an out-of-bounds check to the function. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: check for overflows in io_pin_pages
WARNING: CPU: 0 PID: 5834 at io_uring/memmap.c:144 io_pin_pages+0x149/0x180 io_uring/memmap.c:144
CPU: 0 UID: 0 PID: 5834 Comm: syz-executor825 Not tainted 6.12.0-next-20241118-syzkaller #0
Call Trace:
<TASK>
__io_uaddr_map+0xfb/0x2d0 io_uring/memmap.c:183
io_rings_map io_uring/io_uring.c:2611 [inline]
io_allocate_scq_urings+0x1c0/0x650 io_uring/io_uring.c:3470
io_uring_create+0x5b5/0xc00 io_uring/io_uring.c:3692
io_uring_setup io_uring/io_uring.c:3781 [inline]
...
</TASK>
io_pin_pages()'s uaddr parameter came directly from the user and can be
garbage. Don't just add size to it as it can overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/gem: prevent integer overflow in msm_ioctl_gem_submit()
The "submit->cmd[i].size" and "submit->cmd[i].offset" variables are u32
values that come from the user via the submit_lookup_cmds() function.
This addition could lead to an integer wrapping bug so use size_add()
to prevent that.
Patchwork: https://patchwork.freedesktop.org/patch/624696/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm: zynqmp_dp: Fix integer overflow in zynqmp_dp_rate_get()
This patch fixes a potential integer overflow in the zynqmp_dp_rate_get()
The issue comes up when the expression
drm_dp_bw_code_to_link_rate(dp->test.bw_code) * 10000 is evaluated using 32-bit
Now the constant is a compatible 64-bit type.
Resolves coverity issues: CID 1636340 and CID 1635811 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix a buffer overflow in mgmt_mesh_add()
Smatch Warning:
net/bluetooth/mgmt_util.c:375 mgmt_mesh_add() error: __memcpy()
'mesh_tx->param' too small (48 vs 50)
Analysis:
'mesh_tx->param' is array of size 48. This is the destination.
u8 param[sizeof(struct mgmt_cp_mesh_send) + 29]; // 19 + 29 = 48.
But in the caller 'mesh_send' we reject only when len > 50.
len > (MGMT_MESH_SEND_SIZE + 31) // 19 + 31 = 50. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix handling of offline queues in blk_mq_alloc_request_hctx()
This patch prevents that test nvme/004 triggers the following:
UBSAN: array-index-out-of-bounds in block/blk-mq.h:135:9
index 512 is out of range for type 'long unsigned int [512]'
Call Trace:
show_stack+0x52/0x58
dump_stack_lvl+0x49/0x5e
dump_stack+0x10/0x12
ubsan_epilogue+0x9/0x3b
__ubsan_handle_out_of_bounds.cold+0x44/0x49
blk_mq_alloc_request_hctx+0x304/0x310
__nvme_submit_sync_cmd+0x70/0x200 [nvme_core]
nvmf_connect_io_queue+0x23e/0x2a0 [nvme_fabrics]
nvme_loop_connect_io_queues+0x8d/0xb0 [nvme_loop]
nvme_loop_create_ctrl+0x58e/0x7d0 [nvme_loop]
nvmf_create_ctrl+0x1d7/0x4d0 [nvme_fabrics]
nvmf_dev_write+0xae/0x111 [nvme_fabrics]
vfs_write+0x144/0x560
ksys_write+0xb7/0x140
__x64_sys_write+0x42/0x50
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
ima: Fix a potential integer overflow in ima_appraise_measurement
When the ima-modsig is enabled, the rc passed to evm_verifyxattr() may be
negative, which may cause the integer overflow problem. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: gpio-xilinx: Fix integer overflow
Current implementation is not able to configure more than 32 pins
due to incorrect data type. So type casting with unsigned long
to avoid it. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - add param check for RSA
Reject requests with a source buffer that is bigger than the size of the
key. This is to prevent a possible integer underflow that might happen
when copying the source scatterlist into a linear buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: check if cluster num is valid
Syzbot reported slab-out-of-bounds read in exfat_clear_bitmap.
This was triggered by reproducer calling truncute with size 0,
which causes the following trace:
BUG: KASAN: slab-out-of-bounds in exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174
Read of size 8 at addr ffff888115aa9508 by task syz-executor251/365
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack_lvl+0x1e2/0x24b lib/dump_stack.c:118
print_address_description+0x81/0x3c0 mm/kasan/report.c:233
__kasan_report mm/kasan/report.c:419 [inline]
kasan_report+0x1a4/0x1f0 mm/kasan/report.c:436
__asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:309
exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174
exfat_free_cluster+0x25a/0x4a0 fs/exfat/fatent.c:181
__exfat_truncate+0x99e/0xe00 fs/exfat/file.c:217
exfat_truncate+0x11b/0x4f0 fs/exfat/file.c:243
exfat_setattr+0xa03/0xd40 fs/exfat/file.c:339
notify_change+0xb76/0xe10 fs/attr.c:336
do_truncate+0x1ea/0x2d0 fs/open.c:65
Move the is_valid_cluster() helper from fatent.c to a common
header to make it reusable in other *.c files. And add is_valid_cluster()
to validate if cluster number is within valid range in exfat_clear_bitmap()
and exfat_set_bitmap(). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: isp1760: Fix out-of-bounds array access
Running the driver through kasan gives an interesting splat:
BUG: KASAN: global-out-of-bounds in isp1760_register+0x180/0x70c
Read of size 20 at addr f1db2e64 by task swapper/0/1
(...)
isp1760_register from isp1760_plat_probe+0x1d8/0x220
(...)
This happens because the loop reading the regmap fields for the
different ISP1760 variants look like this:
for (i = 0; i < HC_FIELD_MAX; i++) { ... }
Meaning it expects the arrays to be at least HC_FIELD_MAX - 1 long.
However the arrays isp1760_hc_reg_fields[], isp1763_hc_reg_fields[],
isp1763_hc_volatile_ranges[] and isp1763_dc_volatile_ranges[] are
dynamically sized during compilation.
Fix this by putting an empty assignment to the [HC_FIELD_MAX]
and [DC_FIELD_MAX] array member at the end of each array.
This will make the array one member longer than it needs to be,
but avoids the risk of overwriting whatever is inside
[HC_FIELD_MAX - 1] and is simple and intuitive to read. Also
add comments explaining what is going on. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix potential array overflow in bpf_trampoline_get_progs()
The cnt value in the 'cnt >= BPF_MAX_TRAMP_PROGS' check does not
include BPF_TRAMP_MODIFY_RETURN bpf programs, so the number of
the attached BPF_TRAMP_MODIFY_RETURN bpf programs in a trampoline
can exceed BPF_MAX_TRAMP_PROGS.
When this happens, the assignment '*progs++ = aux->prog' in
bpf_trampoline_get_progs() will cause progs array overflow as the
progs field in the bpf_tramp_progs struct can only hold at most
BPF_MAX_TRAMP_PROGS bpf programs. |