| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix failure to rebuild free space tree using multiple transactions
If we are rebuilding a free space tree, while modifying the free space
tree we may need to allocate a new metadata block group.
If we end up using multiple transactions for the rebuild, when we call
btrfs_end_transaction() we enter btrfs_create_pending_block_groups()
which calls add_block_group_free_space() to add items to the free space
tree for the block group.
Then later during the free space tree rebuild, at
btrfs_rebuild_free_space_tree(), we may find such new block groups
and call populate_free_space_tree() for them, which fails with -EEXIST
because there are already items in the free space tree. Then we abort the
transaction with -EEXIST at btrfs_rebuild_free_space_tree().
Notice that we say "may find" the new block groups because a new block
group may be inserted in the block groups rbtree, which is being iterated
by the rebuild process, before or after the current node where the rebuild
process is currently at.
Syzbot recently reported such case which produces a trace like the
following:
------------[ cut here ]------------
BTRFS: Transaction aborted (error -17)
WARNING: CPU: 1 PID: 7626 at fs/btrfs/free-space-tree.c:1341 btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341
Modules linked in:
CPU: 1 UID: 0 PID: 7626 Comm: syz.2.25 Not tainted 6.15.0-rc7-syzkaller-00085-gd7fa1af5b33e-dirty #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341
lr : btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341
sp : ffff80009c4f7740
x29: ffff80009c4f77b0 x28: ffff0000d4c3f400 x27: 0000000000000000
x26: dfff800000000000 x25: ffff70001389eee8 x24: 0000000000000003
x23: 1fffe000182b6e7b x22: 0000000000000000 x21: ffff0000c15b73d8
x20: 00000000ffffffef x19: ffff0000c15b7378 x18: 1fffe0003386f276
x17: ffff80008f31e000 x16: ffff80008adbe98c x15: 0000000000000001
x14: 1fffe0001b281550 x13: 0000000000000000 x12: 0000000000000000
x11: ffff60001b281551 x10: 0000000000000003 x9 : 1c8922000a902c00
x8 : 1c8922000a902c00 x7 : ffff800080485878 x6 : 0000000000000000
x5 : 0000000000000001 x4 : 0000000000000001 x3 : ffff80008047843c
x2 : 0000000000000001 x1 : ffff80008b3ebc40 x0 : 0000000000000001
Call trace:
btrfs_rebuild_free_space_tree+0x470/0x54c fs/btrfs/free-space-tree.c:1341 (P)
btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074
btrfs_remount_rw fs/btrfs/super.c:1319 [inline]
btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543
reconfigure_super+0x1d4/0x6f0 fs/super.c:1083
do_remount fs/namespace.c:3365 [inline]
path_mount+0xb34/0xde0 fs/namespace.c:4200
do_mount fs/namespace.c:4221 [inline]
__do_sys_mount fs/namespace.c:4432 [inline]
__se_sys_mount fs/namespace.c:4409 [inline]
__arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
irq event stamp: 330
hardirqs last enabled at (329): [<ffff80008048590c>] raw_spin_rq_unlock_irq kernel/sched/sched.h:1525 [inline]
hardirqs last enabled at (329): [<ffff80008048590c>] finish_lock_switch+0xb0/0x1c0 kernel/sched/core.c:5130
hardirqs last disabled at (330): [<ffff80008adb9e60>] el1_dbg+0x24/0x80 arch/arm64/kernel/entry-common.c:511
softirqs last enabled at (10): [<ffff8000801fbf10>] local_bh_enable+0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix unsafe xarray access in implicit ODP handling
__xa_store() and __xa_erase() were used without holding the proper lock,
which led to a lockdep warning due to unsafe RCU usage. This patch
replaces them with xa_store() and xa_erase(), which perform the necessary
locking internally.
=============================
WARNING: suspicious RCPU usage
6.14.0-rc7_for_upstream_debug_2025_03_18_15_01 #1 Not tainted
-----------------------------
./include/linux/xarray.h:1211 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
3 locks held by kworker/u136:0/219:
at: process_one_work+0xbe4/0x15f0
process_one_work+0x75c/0x15f0
pagefault_mr+0x9a5/0x1390 [mlx5_ib]
stack backtrace:
CPU: 14 UID: 0 PID: 219 Comm: kworker/u136:0 Not tainted
6.14.0-rc7_for_upstream_debug_2025_03_18_15_01 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib]
Call Trace:
dump_stack_lvl+0xa8/0xc0
lockdep_rcu_suspicious+0x1e6/0x260
xas_create+0xb8a/0xee0
xas_store+0x73/0x14c0
__xa_store+0x13c/0x220
? xa_store_range+0x390/0x390
? spin_bug+0x1d0/0x1d0
pagefault_mr+0xcb5/0x1390 [mlx5_ib]
? _raw_spin_unlock+0x1f/0x30
mlx5_ib_eqe_pf_action+0x3be/0x2620 [mlx5_ib]
? lockdep_hardirqs_on_prepare+0x400/0x400
? mlx5_ib_invalidate_range+0xcb0/0xcb0 [mlx5_ib]
process_one_work+0x7db/0x15f0
? pwq_dec_nr_in_flight+0xda0/0xda0
? assign_work+0x168/0x240
worker_thread+0x57d/0xcd0
? rescuer_thread+0xc40/0xc40
kthread+0x3b3/0x800
? kthread_is_per_cpu+0xb0/0xb0
? lock_downgrade+0x680/0x680
? do_raw_spin_lock+0x12d/0x270
? spin_bug+0x1d0/0x1d0
? finish_task_switch.isra.0+0x284/0x9e0
? lockdep_hardirqs_on_prepare+0x284/0x400
? kthread_is_per_cpu+0xb0/0xb0
ret_from_fork+0x2d/0x70
? kthread_is_per_cpu+0xb0/0xb0
ret_from_fork_asm+0x11/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Do not trigger WARN_ON() due to a commit_overrun
When reading a memory mapped buffer the reader page is just swapped out
with the last page written in the write buffer. If the reader page is the
same as the commit buffer (the buffer that is currently being written to)
it was assumed that it should never have missed events. If it does, it
triggers a WARN_ON_ONCE().
But there just happens to be one scenario where this can legitimately
happen. That is on a commit_overrun. A commit overrun is when an interrupt
preempts an event being written to the buffer and then the interrupt adds
so many new events that it fills and wraps the buffer back to the commit.
Any new events would then be dropped and be reported as "missed_events".
In this case, the next page to read is the commit buffer and after the
swap of the reader page, the reader page will be the commit buffer, but
this time there will be missed events and this triggers the following
warning:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1127 at kernel/trace/ring_buffer.c:7357 ring_buffer_map_get_reader+0x49a/0x780
Modules linked in: kvm_intel kvm irqbypass
CPU: 2 UID: 0 PID: 1127 Comm: trace-cmd Not tainted 6.15.0-rc7-test-00004-g478bc2824b45-dirty #564 PREEMPT
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:ring_buffer_map_get_reader+0x49a/0x780
Code: 00 00 00 48 89 fe 48 c1 ee 03 80 3c 2e 00 0f 85 ec 01 00 00 4d 3b a6 a8 00 00 00 0f 85 8a fd ff ff 48 85 c0 0f 84 55 fe ff ff <0f> 0b e9 4e fe ff ff be 08 00 00 00 4c 89 54 24 58 48 89 54 24 50
RSP: 0018:ffff888121787dc0 EFLAGS: 00010002
RAX: 00000000000006a2 RBX: ffff888100062800 RCX: ffffffff8190cb49
RDX: ffff888126934c00 RSI: 1ffff11020200a15 RDI: ffff8881010050a8
RBP: dffffc0000000000 R08: 0000000000000000 R09: ffffed1024d26982
R10: ffff888126934c17 R11: ffff8881010050a8 R12: ffff888126934c00
R13: ffff8881010050b8 R14: ffff888101005000 R15: ffff888126930008
FS: 00007f95c8cd7540(0000) GS:ffff8882b576e000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f95c8de4dc0 CR3: 0000000128452002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __pfx_ring_buffer_map_get_reader+0x10/0x10
tracing_buffers_ioctl+0x283/0x370
__x64_sys_ioctl+0x134/0x190
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f95c8de48db
Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff ff 77 1c 48 8b 44 24 18 64 48 2b 04 25 28 00 00
RSP: 002b:00007ffe037ba110 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffe037bb2b0 RCX: 00007f95c8de48db
RDX: 0000000000000000 RSI: 0000000000005220 RDI: 0000000000000006
RBP: 00007ffe037ba180 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe037bb6f8 R14: 00007f95c9065000 R15: 00005575c7492c90
</TASK>
irq event stamp: 5080
hardirqs last enabled at (5079): [<ffffffff83e0adb0>] _raw_spin_unlock_irqrestore+0x50/0x70
hardirqs last disabled at (5080): [<ffffffff83e0aa83>] _raw_spin_lock_irqsave+0x63/0x70
softirqs last enabled at (4182): [<ffffffff81516122>] handle_softirqs+0x552/0x710
softirqs last disabled at (4159): [<ffffffff815163f7>] __irq_exit_rcu+0x107/0x210
---[ end trace 0000000000000000 ]---
The above was triggered by running on a kernel with both lockdep and KASAN
as well as kmemleak enabled and executing the following command:
# perf record -o perf-test.dat -a -- trace-cmd record --nosplice -e all -p function hackbench 50
With perf interjecting a lot of interrupts and trace-cmd enabling all
events as well as function tracing, with lockdep, KASAN and kmemleak
enabled, it could cause an interrupt preempting an event being written to
add enough event
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: mediatek: eint: Fix invalid pointer dereference for v1 platforms
Commit 3ef9f710efcb ("pinctrl: mediatek: Add EINT support for multiple
addresses") introduced an access to the 'soc' field of struct
mtk_pinctrl in mtk_eint_do_init() and for that an include of
pinctrl-mtk-common-v2.h.
However, pinctrl drivers relying on the v1 common driver include
pinctrl-mtk-common.h instead, which provides another definition of
struct mtk_pinctrl that does not contain an 'soc' field.
Since mtk_eint_do_init() can be called both by v1 and v2 drivers, it
will now try to dereference an invalid pointer when called on v1
platforms. This has been observed on Genio 350 EVK (MT8365), which
crashes very early in boot (the kernel trace can only be seen with
earlycon).
In order to fix this, since 'struct mtk_pinctrl' was only needed to get
a 'struct mtk_eint_pin', make 'struct mtk_eint_pin' a parameter
of mtk_eint_do_init() so that callers need to supply it, removing
mtk_eint_do_init()'s dependency on any particular 'struct mtk_pinctrl'. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: jsm: fix NPE during jsm_uart_port_init
No device was set which caused serial_base_ctrl_add to crash.
BUG: kernel NULL pointer dereference, address: 0000000000000050
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 16 UID: 0 PID: 368 Comm: (udev-worker) Not tainted 6.12.25-amd64 #1 Debian 6.12.25-1
RIP: 0010:serial_base_ctrl_add+0x96/0x120
Call Trace:
<TASK>
serial_core_register_port+0x1a0/0x580
? __setup_irq+0x39c/0x660
? __kmalloc_cache_noprof+0x111/0x310
jsm_uart_port_init+0xe8/0x180 [jsm]
jsm_probe_one+0x1f4/0x410 [jsm]
local_pci_probe+0x42/0x90
pci_device_probe+0x22f/0x270
really_probe+0xdb/0x340
? pm_runtime_barrier+0x54/0x90
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x78/0x110
driver_probe_device+0x1f/0xa0
__driver_attach+0xba/0x1c0
bus_for_each_dev+0x8c/0xe0
bus_add_driver+0x112/0x1f0
driver_register+0x72/0xd0
jsm_init_module+0x36/0xff0 [jsm]
? __pfx_jsm_init_module+0x10/0x10 [jsm]
do_one_initcall+0x58/0x310
do_init_module+0x60/0x230
Tested with Digi Neo PCIe 8 port card. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: sanitize request list handling
Validate the request in nvme_tcp_handle_r2t() to ensure it's not part of
any list, otherwise a malicious R2T PDU might inject a loop in request
list processing. |
| In the Linux kernel, the following vulnerability has been resolved:
net: airoha: fix potential use-after-free in airoha_npu_get()
np->name was being used after calling of_node_put(np), which
releases the node and can lead to a use-after-free bug.
Previously, of_node_put(np) was called unconditionally after
of_find_device_by_node(np), which could result in a use-after-free if
pdev is NULL.
This patch moves of_node_put(np) after the error check to ensure
the node is only released after both the error and success cases
are handled appropriately, preventing potential resource issues. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix copy-to-cache so that it performs collection with ceph+fscache
The netfs copy-to-cache that is used by Ceph with local caching sets up a
new request to write data just read to the cache. The request is started
and then left to look after itself whilst the app continues. The request
gets notified by the backing fs upon completion of the async DIO write, but
then tries to wake up the app because NETFS_RREQ_OFFLOAD_COLLECTION isn't
set - but the app isn't waiting there, and so the request just hangs.
Fix this by setting NETFS_RREQ_OFFLOAD_COLLECTION which causes the
notification from the backing filesystem to put the collection onto a work
queue instead. |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: fix the using of Rx buffer DMA
The wx_rx_buffer structure contained two DMA address fields: 'dma' and
'page_dma'. However, only 'page_dma' was actually initialized and used
to program the Rx descriptor. But 'dma' was uninitialized and used in
some paths.
This could lead to undefined behavior, including DMA errors or
use-after-free, if the uninitialized 'dma' was used. Althrough such
error has not yet occurred, it is worth fixing in the code. |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: properly reset Rx ring descriptor
When device reset is triggered by feature changes such as toggling Rx
VLAN offload, wx->do_reset() is called to reinitialize Rx rings. The
hardware descriptor ring may retain stale values from previous sessions.
And only set the length to 0 in rx_desc[0] would result in building
malformed SKBs. Fix it to ensure a clean slate after device reset.
[ 549.186435] [ C16] ------------[ cut here ]------------
[ 549.186457] [ C16] kernel BUG at net/core/skbuff.c:2814!
[ 549.186468] [ C16] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[ 549.186472] [ C16] CPU: 16 UID: 0 PID: 0 Comm: swapper/16 Kdump: loaded Not tainted 6.16.0-rc4+ #23 PREEMPT(voluntary)
[ 549.186476] [ C16] Hardware name: Micro-Star International Co., Ltd. MS-7E16/X670E GAMING PLUS WIFI (MS-7E16), BIOS 1.90 12/31/2024
[ 549.186478] [ C16] RIP: 0010:__pskb_pull_tail+0x3ff/0x510
[ 549.186484] [ C16] Code: 06 f0 ff 4f 34 74 7b 4d 8b 8c 24 c8 00 00 00 45 8b 84 24 c0 00 00 00 e9 c8 fd ff ff 48 c7 44 24 08 00 00 00 00 e9 5e fe ff ff <0f> 0b 31 c0 e9 23 90 5b ff 41 f7 c6 ff 0f 00 00 75 bf 49 8b 06 a8
[ 549.186487] [ C16] RSP: 0018:ffffb391c0640d70 EFLAGS: 00010282
[ 549.186490] [ C16] RAX: 00000000fffffff2 RBX: ffff8fe7e4d40200 RCX: 00000000fffffff2
[ 549.186492] [ C16] RDX: ffff8fe7c3a4bf8e RSI: 0000000000000180 RDI: ffff8fe7c3a4bf40
[ 549.186494] [ C16] RBP: ffffb391c0640da8 R08: ffff8fe7c3a4c0c0 R09: 000000000000000e
[ 549.186496] [ C16] R10: ffffb391c0640d88 R11: 000000000000000e R12: ffff8fe7e4d40200
[ 549.186497] [ C16] R13: 00000000fffffff2 R14: ffff8fe7fa01a000 R15: 00000000fffffff2
[ 549.186499] [ C16] FS: 0000000000000000(0000) GS:ffff8fef5ae40000(0000) knlGS:0000000000000000
[ 549.186502] [ C16] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 549.186503] [ C16] CR2: 00007f77d81d6000 CR3: 000000051a032000 CR4: 0000000000750ef0
[ 549.186505] [ C16] PKRU: 55555554
[ 549.186507] [ C16] Call Trace:
[ 549.186510] [ C16] <IRQ>
[ 549.186513] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5
[ 549.186517] [ C16] __skb_pad+0xc7/0xf0
[ 549.186523] [ C16] wx_clean_rx_irq+0x355/0x3b0 [libwx]
[ 549.186533] [ C16] wx_poll+0x92/0x120 [libwx]
[ 549.186540] [ C16] __napi_poll+0x28/0x190
[ 549.186544] [ C16] net_rx_action+0x301/0x3f0
[ 549.186548] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5
[ 549.186551] [ C16] ? __raw_spin_lock_irqsave+0x1e/0x50
[ 549.186554] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5
[ 549.186557] [ C16] ? wake_up_nohz_cpu+0x35/0x160
[ 549.186559] [ C16] ? srso_alias_return_thunk+0x5/0xfbef5
[ 549.186563] [ C16] handle_softirqs+0xf9/0x2c0
[ 549.186568] [ C16] __irq_exit_rcu+0xc7/0x130
[ 549.186572] [ C16] common_interrupt+0xb8/0xd0
[ 549.186576] [ C16] </IRQ>
[ 549.186577] [ C16] <TASK>
[ 549.186579] [ C16] asm_common_interrupt+0x22/0x40
[ 549.186582] [ C16] RIP: 0010:cpuidle_enter_state+0xc2/0x420
[ 549.186585] [ C16] Code: 00 00 e8 11 0e 5e ff e8 ac f0 ff ff 49 89 c5 0f 1f 44 00 00 31 ff e8 0d ed 5c ff 45 84 ff 0f 85 40 02 00 00 fb 0f 1f 44 00 00 <45> 85 f6 0f 88 84 01 00 00 49 63 d6 48 8d 04 52 48 8d 04 82 49 8d
[ 549.186587] [ C16] RSP: 0018:ffffb391c0277e78 EFLAGS: 00000246
[ 549.186590] [ C16] RAX: ffff8fef5ae40000 RBX: 0000000000000003 RCX: 0000000000000000
[ 549.186591] [ C16] RDX: 0000007fde0faac5 RSI: ffffffff826e53f6 RDI: ffffffff826fa9b3
[ 549.186593] [ C16] RBP: ffff8fe7c3a20800 R08: 0000000000000002 R09: 0000000000000000
[ 549.186595] [ C16] R10: 0000000000000000 R11: 000000000000ffff R12: ffffffff82ed7a40
[ 549.186596] [ C16] R13: 0000007fde0faac5 R14: 0000000000000003 R15: 0000000000000000
[ 549.186601] [ C16] ? cpuidle_enter_state+0xb3/0x420
[ 549.186605] [ C16] cpuidle_en
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add NULL check in eswitch lag check
The function ice_lag_is_switchdev_running() is being called from outside of
the LAG event handler code. This results in the lag->upper_netdev being
NULL sometimes. To avoid a NULL-pointer dereference, there needs to be a
check before it is dereferenced. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: qcom_smd: Fix refcount leak in qcom_smd_parse_edge
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoc: audio-graph-card2: Fix refcount leak bug in __graph_get_type()
We should call of_node_put() for the reference before its replacement
as it returned by of_get_parent() which has increased the refcount.
Besides, we should also call of_node_put() before return. |
| In the Linux kernel, the following vulnerability has been resolved:
net: 9p: fix refcount leak in p9_read_work() error handling
p9_req_put need to be called when m->rreq->rc.sdata is NULL to avoid
temporary refcount leak.
[Dominique: commit wording adjustments, p9_req_put argument fixes for rebase] |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: ipc3-topology: Prevent double freeing of ipc_control_data via load_bytes
We have sanity checks for byte controls and if any of the fail the locally
allocated scontrol->ipc_control_data is freed up, but not set to NULL.
On a rollback path of the error the higher level code will also try to free
the scontrol->ipc_control_data which will eventually going to lead to
memory corruption as double freeing memory is not a good thing. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix deadlock and link starvation in outgoing data path
The current implementation queues up new control and user packets as needed
and processes this queue down to the ldisc in the same code path.
That means that the upper and the lower layer are hard coupled in the code.
Due to this deadlocks can happen as seen below while transmitting data,
especially during ldisc congestion. Furthermore, the data channels starve
the control channel on high transmission load on the ldisc.
Introduce an additional control channel data queue to prevent timeouts and
link hangups during ldisc congestion. This is being processed before the
user channel data queue in gsm_data_kick(), i.e. with the highest priority.
Put the queue to ldisc data path into a workqueue and trigger it whenever
new data has been put into the transmission queue. Change
gsm_dlci_data_sweep() accordingly to fill up the transmission queue until
TX_THRESH_HI. This solves the locking issue, keeps latency low and provides
good performance on high data load.
Note that now all packets from a DLCI are removed from the internal queue
if the associated DLCI was closed. This ensures that no data is sent by the
introduced write task to an already closed DLCI.
BUG: spinlock recursion on CPU#0, test_v24_loop/124
lock: serial8250_ports+0x3a8/0x7500, .magic: dead4ead, .owner: test_v24_loop/124, .owner_cpu: 0
CPU: 0 PID: 124 Comm: test_v24_loop Tainted: G O 5.18.0-rc2 #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x34/0x44
do_raw_spin_lock+0x76/0xa0
_raw_spin_lock_irqsave+0x72/0x80
uart_write_room+0x3b/0xc0
gsm_data_kick+0x14b/0x240 [n_gsm]
gsmld_write_wakeup+0x35/0x70 [n_gsm]
tty_wakeup+0x53/0x60
tty_port_default_wakeup+0x1b/0x30
serial8250_tx_chars+0x12f/0x220
serial8250_handle_irq.part.0+0xfe/0x150
serial8250_default_handle_irq+0x48/0x80
serial8250_interrupt+0x56/0xa0
__handle_irq_event_percpu+0x78/0x1f0
handle_irq_event+0x34/0x70
handle_fasteoi_irq+0x90/0x1e0
__common_interrupt+0x69/0x100
common_interrupt+0x48/0xc0
asm_common_interrupt+0x1e/0x40
RIP: 0010:__do_softirq+0x83/0x34e
Code: 2a 0a ff 0f b7 ed c7 44 24 10 0a 00 00 00 48 c7 c7 51 2a 64 82 e8 2d
e2 d5 ff 65 66 c7 05 83 af 1e 7e 00 00 fb b8 ff ff ff ff <49> c7 c2 40 61
80 82 0f bc c5 41 89 c4 41 83 c4 01 0f 84 e6 00 00
RSP: 0018:ffffc90000003f98 EFLAGS: 00000286
RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff82642a51 RDI: ffffffff825bb5e7
RBP: 0000000000000200 R08: 00000008de3271a8 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000030 R14: 0000000000000000 R15: 0000000000000000
? __do_softirq+0x73/0x34e
irq_exit_rcu+0xb5/0x100
common_interrupt+0xa4/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x1e/0x40
RIP: 0010:_raw_spin_unlock_irqrestore+0x2e/0x50
Code: 00 55 48 89 fd 48 83 c7 18 53 48 89 f3 48 8b 74 24 10 e8 85 28 36 ff
48 89 ef e8 cd 58 36 ff 80 e7 02 74 01 fb bf 01 00 00 00 <e8> 3d 97 33 ff
65 8b 05 96 23 2b 7e 85 c0 74 03 5b 5d c3 0f 1f 44
RSP: 0018:ffffc9000020fd08 EFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000246 RCX: 0000000000000000
RDX: 0000000000000004 RSI: ffffffff8257fd74 RDI: 0000000000000001
RBP: ffff8880057de3a0 R08: 00000008de233000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000100 R14: 0000000000000202 R15: ffff8880057df0b8
? _raw_spin_unlock_irqrestore+0x23/0x50
gsmtty_write+0x65/0x80 [n_gsm]
n_tty_write+0x33f/0x530
? swake_up_all+0xe0/0xe0
file_tty_write.constprop.0+0x1b1/0x320
? n_tty_flush_buffer+0xb0/0xb0
new_sync_write+0x10c/0x190
vfs_write+0x282/0x310
ksys_write+0x68/0xe0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f3e5e35c15c
Code: 8b 7c 24 08 89 c5 e8 c5 ff ff ff 89 ef 89 44 24
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
vfio: Split migration ops from main device ops
vfio core checks whether the driver sets some migration op (e.g.
set_state/get_state) and accordingly calls its op.
However, currently mlx5 driver sets the above ops without regards to its
migration caps.
This might lead to unexpected usage/Oops if user space may call to the
above ops even if the driver doesn't support migration. As for example,
the migration state_mutex is not initialized in that case.
The cleanest way to manage that seems to split the migration ops from
the main device ops, this will let the driver setting them separately
from the main ops when it's applicable.
As part of that, validate ops construction on registration and include a
check for VFIO_MIGRATION_STOP_COPY since the uAPI claims it must be set
in migration_flags.
HISI driver was changed as well to match this scheme.
This scheme may enable down the road to come with some extra group of
ops (e.g. DMA log) that can be set without regards to the other options
based on driver caps. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/perf: Optimize clearing the pending PMI and remove WARN_ON for PMI check in power_pmu_disable
commit 2c9ac51b850d ("powerpc/perf: Fix PMU callbacks to clear
pending PMI before resetting an overflown PMC") added a new
function "pmi_irq_pending" in hw_irq.h. This function is to check
if there is a PMI marked as pending in Paca (PACA_IRQ_PMI).This is
used in power_pmu_disable in a WARN_ON. The intention here is to
provide a warning if there is PMI pending, but no counter is found
overflown.
During some of the perf runs, below warning is hit:
WARNING: CPU: 36 PID: 0 at arch/powerpc/perf/core-book3s.c:1332 power_pmu_disable+0x25c/0x2c0
Modules linked in:
-----
NIP [c000000000141c3c] power_pmu_disable+0x25c/0x2c0
LR [c000000000141c8c] power_pmu_disable+0x2ac/0x2c0
Call Trace:
[c000000baffcfb90] [c000000000141c8c] power_pmu_disable+0x2ac/0x2c0 (unreliable)
[c000000baffcfc10] [c0000000003e2f8c] perf_pmu_disable+0x4c/0x60
[c000000baffcfc30] [c0000000003e3344] group_sched_out.part.124+0x44/0x100
[c000000baffcfc80] [c0000000003e353c] __perf_event_disable+0x13c/0x240
[c000000baffcfcd0] [c0000000003dd334] event_function+0xc4/0x140
[c000000baffcfd20] [c0000000003d855c] remote_function+0x7c/0xa0
[c000000baffcfd50] [c00000000026c394] flush_smp_call_function_queue+0xd4/0x300
[c000000baffcfde0] [c000000000065b24] smp_ipi_demux_relaxed+0xa4/0x100
[c000000baffcfe20] [c0000000000cb2b0] xive_muxed_ipi_action+0x20/0x40
[c000000baffcfe40] [c000000000207c3c] __handle_irq_event_percpu+0x8c/0x250
[c000000baffcfee0] [c000000000207e2c] handle_irq_event_percpu+0x2c/0xa0
[c000000baffcff10] [c000000000210a04] handle_percpu_irq+0x84/0xc0
[c000000baffcff40] [c000000000205f14] generic_handle_irq+0x54/0x80
[c000000baffcff60] [c000000000015740] __do_irq+0x90/0x1d0
[c000000baffcff90] [c000000000016990] __do_IRQ+0xc0/0x140
[c0000009732f3940] [c000000bafceaca8] 0xc000000bafceaca8
[c0000009732f39d0] [c000000000016b78] do_IRQ+0x168/0x1c0
[c0000009732f3a00] [c0000000000090c8] hardware_interrupt_common_virt+0x218/0x220
This means that there is no PMC overflown among the active events
in the PMU, but there is a PMU pending in Paca. The function
"any_pmc_overflown" checks the PMCs on active events in
cpuhw->n_events. Code snippet:
<<>>
if (any_pmc_overflown(cpuhw))
clear_pmi_irq_pending();
else
WARN_ON(pmi_irq_pending());
<<>>
Here the PMC overflown is not from active event. Example: When we do
perf record, default cycles and instructions will be running on PMC6
and PMC5 respectively. It could happen that overflowed event is currently
not active and pending PMI is for the inactive event. Debug logs from
trace_printk:
<<>>
any_pmc_overflown: idx is 5: pmc value is 0xd9a
power_pmu_disable: PMC1: 0x0, PMC2: 0x0, PMC3: 0x0, PMC4: 0x0, PMC5: 0xd9a, PMC6: 0x80002011
<<>>
Here active PMC (from idx) is PMC5 , but overflown PMC is PMC6(0x80002011).
When we handle PMI interrupt for such cases, if the PMC overflown is
from inactive event, it will be ignored. Reference commit:
commit bc09c219b2e6 ("powerpc/perf: Fix finding overflowed PMC in interrupt")
Patch addresses two changes:
1) Fix 1 : Removal of warning ( WARN_ON(pmi_irq_pending()); )
We were printing warning if no PMC is found overflown among active PMU
events, but PMI pending in PACA. But this could happen in cases where
PMC overflown is not in active PMC. An inactive event could have caused
the overflow. Hence the warning is not needed. To know pending PMI is
from an inactive event, we need to loop through all PMC's which will
cause more SPR reads via mfspr and increase in context switch. Also in
existing function: perf_event_interrupt, already we ignore PMI's
overflown when it is from an inactive PMC.
2) Fix 2: optimization in clearing pending PMI.
Currently we check for any active PMC overflown before clearing PMI
pending in Paca. This is causing additional SP
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: Fix possible refcount leak in rpmsg_register_device_override()
rpmsg_register_device_override need to call put_device to free vch when
driver_set_override fails.
Fix this by adding a put_device() to the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: imx_rproc: Fix refcount leak in imx_rproc_addr_init
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not needed anymore.
This function has two paths missing of_node_put(). |