| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| D-Link DAP-1325 HNAP SetAPLanSettings Mode Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18811. |
| D-Link DAP-1325 HNAP SetAPLanSettings IPAddr Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18810. |
| Clash for Windows v0.20.12 was discovered to contain a remote code execution (RCE) vulnerability which is exploited via overwriting the configuration file (cfw-setting.yaml). |
| D-Link DAP-1325 HNAP SetAPLanSettings Gateway Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18809. |
| D-Link DAP-1325 HNAP SetAPLanSettings DeviceName Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18808. |
| D-Link DAP-1325 HNAP Missing Authentication Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the implementation of the HNAP interface. The issue results from the lack of authentication prior to allowing access to functionality. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18807. |
| Inductive Automation Ignition OPC UA Quick Client Permissive Cross-domain Policy Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. Although authentication is required to exploit this vulnerability, the existing authentication mechanism can be bypassed.
The specific flaw exists within the configuration of the web server. The issue results from the lack of appropriate Content Security Policy headers. An attacker can leverage this in conjunction with other vulnerabilities to execute code in the context of SYSTEM. Was ZDI-CAN-20539. |
| Inductive Automation Ignition OPC UA Quick Client Cross-Site Scripting Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of the id parameter provided to the Inductive Automation Ignition web interface. The issue results from the lack of proper validation of user-supplied data, which can lead to the injection of an arbitrary script. An attacker can leverage this vulnerability to execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-20355. |
| Inductive Automation Ignition JavaSerializationCodec Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the JavaSerializationCodec class. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of SYSTEM. Was ZDI-CAN-20291. |
| Inductive Automation Ignition ModuleInvoke Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. Authentication is required to exploit this vulnerability.
The specific flaw exists within the ModuleInvoke class. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of SYSTEM. Was ZDI-CAN-21624. |
| Inductive Automation Ignition RunQuery Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. Authentication is required to exploit this vulnerability.
The specific flaw exists within the RunQuery class. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of SYSTEM. Was ZDI-CAN-21625. |
| Inductive Automation Ignition Base64Element Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. Authentication is required to exploit this vulnerability.
The specific flaw exists within the Base64Element class. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of SYSTEM. Was ZDI-CAN-21801. |
| Inductive Automation Ignition ResponseParser SerializedResponse Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. User interaction is required to exploit this vulnerability in that the target must connect to a malicious server.
The specific flaw exists within the ResponseParser method. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-21926. |
| Inductive Automation Ignition ResponseParser Notification Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. User interaction is required to exploit this vulnerability in that the target must connect to a malicious server.
The specific flaw exists within the ResponseParser method. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-22067. |
| Inductive Automation Ignition ExtendedDocumentCodec Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. Authentication is required to exploit this vulnerability.
The specific flaw exists within the ExtendedDocumentCodec class. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of SYSTEM. Was ZDI-CAN-22127. |
| Inductive Automation Ignition getParams Argument Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. User interaction is required to exploit this vulnerability in that the target must connect to a malicious server.
The specific flaw exists within the getParams method. The issue results from the lack of proper validation of a user-supplied string before using it to prepare an argument for a system call. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-22028. |
| Inductive Automation Ignition getJavaExecutable Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Inductive Automation Ignition. User interaction is required to exploit this vulnerability in that the target must connect to a malicious server.
The specific flaw exists within the getJavaExecutable method. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-22029. |
| Honeywell Saia PG5 Controls Suite CAB File Parsing Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Honeywell Saia PG5 Controls Suite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CAB files. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the current user.
. Was ZDI-CAN-18592. |
| Honeywell Saia PG5 Controls Suite Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Honeywell Saia PG5 Controls Suite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of ZIP files. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the current user.
. Was ZDI-CAN-18412. |
| The VikRentCar Car Rental Management System plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.4.2. This is due to missing or incorrect nonce validation on the 'save' function. This makes it possible for unauthenticated attackers to change plugin access privileges via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. Successful exploitation allows attackers with subscriber-level privileges and above to upload arbitrary files on the affected site's server which may make remote code execution possible. |