| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: amd-xgbe: Fix skb data length underflow
There will be BUG_ON() triggered in include/linux/skbuff.h leading to
intermittent kernel panic, when the skb length underflow is detected.
Fix this by dropping the packet if such length underflows are seen
because of inconsistencies in the hardware descriptors. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix sk_forward_memory corruption on retransmission
MPTCP sk_forward_memory handling is a bit special, as such field
is protected by the msk socket spin_lock, instead of the plain
socket lock.
Currently we have a code path updating such field without handling
the relevant lock:
__mptcp_retrans() -> __mptcp_clean_una_wakeup()
Several helpers in __mptcp_clean_una_wakeup() will update
sk_forward_alloc, possibly causing such field corruption, as reported
by Matthieu.
Address the issue providing and using a new variant of blamed function
which explicitly acquires the msk spin lock. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Vangogh: Fix kernel memory out of bounds write
KASAN reports that the GPU metrics table allocated in
vangogh_tables_init() is not large enough for the memset done in
smu_cmn_init_soft_gpu_metrics(). Condensed report follows:
[ 33.861314] BUG: KASAN: slab-out-of-bounds in smu_cmn_init_soft_gpu_metrics+0x73/0x200 [amdgpu]
[ 33.861799] Write of size 168 at addr ffff888129f59500 by task mangoapp/1067
...
[ 33.861808] CPU: 6 UID: 1000 PID: 1067 Comm: mangoapp Tainted: G W 6.12.0-rc4 #356 1a56f59a8b5182eeaf67eb7cb8b13594dd23b544
[ 33.861816] Tainted: [W]=WARN
[ 33.861818] Hardware name: Valve Galileo/Galileo, BIOS F7G0107 12/01/2023
[ 33.861822] Call Trace:
[ 33.861826] <TASK>
[ 33.861829] dump_stack_lvl+0x66/0x90
[ 33.861838] print_report+0xce/0x620
[ 33.861853] kasan_report+0xda/0x110
[ 33.862794] kasan_check_range+0xfd/0x1a0
[ 33.862799] __asan_memset+0x23/0x40
[ 33.862803] smu_cmn_init_soft_gpu_metrics+0x73/0x200 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779]
[ 33.863306] vangogh_get_gpu_metrics_v2_4+0x123/0xad0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779]
[ 33.864257] vangogh_common_get_gpu_metrics+0xb0c/0xbc0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779]
[ 33.865682] amdgpu_dpm_get_gpu_metrics+0xcc/0x110 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779]
[ 33.866160] amdgpu_get_gpu_metrics+0x154/0x2d0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779]
[ 33.867135] dev_attr_show+0x43/0xc0
[ 33.867147] sysfs_kf_seq_show+0x1f1/0x3b0
[ 33.867155] seq_read_iter+0x3f8/0x1140
[ 33.867173] vfs_read+0x76c/0xc50
[ 33.867198] ksys_read+0xfb/0x1d0
[ 33.867214] do_syscall_64+0x90/0x160
...
[ 33.867353] Allocated by task 378 on cpu 7 at 22.794876s:
[ 33.867358] kasan_save_stack+0x33/0x50
[ 33.867364] kasan_save_track+0x17/0x60
[ 33.867367] __kasan_kmalloc+0x87/0x90
[ 33.867371] vangogh_init_smc_tables+0x3f9/0x840 [amdgpu]
[ 33.867835] smu_sw_init+0xa32/0x1850 [amdgpu]
[ 33.868299] amdgpu_device_init+0x467b/0x8d90 [amdgpu]
[ 33.868733] amdgpu_driver_load_kms+0x19/0xf0 [amdgpu]
[ 33.869167] amdgpu_pci_probe+0x2d6/0xcd0 [amdgpu]
[ 33.869608] local_pci_probe+0xda/0x180
[ 33.869614] pci_device_probe+0x43f/0x6b0
Empirically we can confirm that the former allocates 152 bytes for the
table, while the latter memsets the 168 large block.
Root cause appears that when GPU metrics tables for v2_4 parts were added
it was not considered to enlarge the table to fit.
The fix in this patch is rather "brute force" and perhaps later should be
done in a smarter way, by extracting and consolidating the part version to
size logic to a common helper, instead of brute forcing the largest
possible allocation. Nevertheless, for now this works and fixes the out of
bounds write.
v2:
* Drop impossible v3_0 case. (Mario)
(cherry picked from commit 0880f58f9609f0200483a49429af0f050d281703) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Prevent out of bounds access in performance query extensions
Check that the number of perfmons userspace is passing in the copy and
reset extensions is not greater than the internal kernel storage where
the ids will be copied into. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Protect against overflow of ALIGN() during iova allocation
Userspace can supply an iova and uptr such that the target iova alignment
becomes really big and ALIGN() overflows which corrupts the selected area
range during allocation. CONFIG_IOMMUFD_TEST can detect this:
WARNING: CPU: 1 PID: 5092 at drivers/iommu/iommufd/io_pagetable.c:268 iopt_alloc_area_pages drivers/iommu/iommufd/io_pagetable.c:268 [inline]
WARNING: CPU: 1 PID: 5092 at drivers/iommu/iommufd/io_pagetable.c:268 iopt_map_pages+0xf95/0x1050 drivers/iommu/iommufd/io_pagetable.c:352
Modules linked in:
CPU: 1 PID: 5092 Comm: syz-executor294 Not tainted 6.10.0-rc5-syzkaller-00294-g3ffea9a7a6f7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024
RIP: 0010:iopt_alloc_area_pages drivers/iommu/iommufd/io_pagetable.c:268 [inline]
RIP: 0010:iopt_map_pages+0xf95/0x1050 drivers/iommu/iommufd/io_pagetable.c:352
Code: fc e9 a4 f3 ff ff e8 1a 8b 4c fc 41 be e4 ff ff ff e9 8a f3 ff ff e8 0a 8b 4c fc 90 0f 0b 90 e9 37 f5 ff ff e8 fc 8a 4c fc 90 <0f> 0b 90 e9 68 f3 ff ff 48 c7 c1 ec 82 ad 8f 80 e1 07 80 c1 03 38
RSP: 0018:ffffc90003ebf9e0 EFLAGS: 00010293
RAX: ffffffff85499fa4 RBX: 00000000ffffffef RCX: ffff888079b49e00
RDX: 0000000000000000 RSI: 00000000ffffffef RDI: 0000000000000000
RBP: ffffc90003ebfc50 R08: ffffffff85499b30 R09: ffffffff85499942
R10: 0000000000000002 R11: ffff888079b49e00 R12: ffff8880228e0010
R13: 0000000000000000 R14: 1ffff920007d7f68 R15: ffffc90003ebfd00
FS: 000055557d760380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000005fdeb8 CR3: 000000007404a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
iommufd_ioas_copy+0x610/0x7b0 drivers/iommu/iommufd/ioas.c:274
iommufd_fops_ioctl+0x4d9/0x5a0 drivers/iommu/iommufd/main.c:421
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Cap the automatic alignment to the huge page size, which is probably a
better idea overall. Huge automatic alignments can fragment and chew up
the available IOVA space without any reason. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: use hweight16 to get correct tx antenna
The chainmask is u16 so using hweight8 cannot get correct tx_ant.
Without this patch, the tx_ant of band 2 would be -1 and lead to the
following issue:
BUG: KASAN: stack-out-of-bounds in mt7996_mcu_add_sta+0x12e0/0x16e0 [mt7996e] |
| In the Linux kernel, the following vulnerability has been resolved:
ice: move netif_queue_set_napi to rtnl-protected sections
Currently, netif_queue_set_napi() is called from ice_vsi_rebuild() that is
not rtnl-locked when called from the reset. This creates the need to take
the rtnl_lock just for a single function and complicates the
synchronization with .ndo_bpf. At the same time, there no actual need to
fill napi-to-queue information at this exact point.
Fill napi-to-queue information when opening the VSI and clear it when the
VSI is being closed. Those routines are already rtnl-locked.
Also, rewrite napi-to-queue assignment in a way that prevents inclusion of
XDP queues, as this leads to out-of-bounds writes, such as one below.
[ +0.000004] BUG: KASAN: slab-out-of-bounds in netif_queue_set_napi+0x1c2/0x1e0
[ +0.000012] Write of size 8 at addr ffff889881727c80 by task bash/7047
[ +0.000006] CPU: 24 PID: 7047 Comm: bash Not tainted 6.10.0-rc2+ #2
[ +0.000004] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0014.082620210524 08/26/2021
[ +0.000003] Call Trace:
[ +0.000003] <TASK>
[ +0.000002] dump_stack_lvl+0x60/0x80
[ +0.000007] print_report+0xce/0x630
[ +0.000007] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ +0.000007] ? __virt_addr_valid+0x1c9/0x2c0
[ +0.000005] ? netif_queue_set_napi+0x1c2/0x1e0
[ +0.000003] kasan_report+0xe9/0x120
[ +0.000004] ? netif_queue_set_napi+0x1c2/0x1e0
[ +0.000004] netif_queue_set_napi+0x1c2/0x1e0
[ +0.000005] ice_vsi_close+0x161/0x670 [ice]
[ +0.000114] ice_dis_vsi+0x22f/0x270 [ice]
[ +0.000095] ice_pf_dis_all_vsi.constprop.0+0xae/0x1c0 [ice]
[ +0.000086] ice_prepare_for_reset+0x299/0x750 [ice]
[ +0.000087] pci_dev_save_and_disable+0x82/0xd0
[ +0.000006] pci_reset_function+0x12d/0x230
[ +0.000004] reset_store+0xa0/0x100
[ +0.000006] ? __pfx_reset_store+0x10/0x10
[ +0.000002] ? __pfx_mutex_lock+0x10/0x10
[ +0.000004] ? __check_object_size+0x4c1/0x640
[ +0.000007] kernfs_fop_write_iter+0x30b/0x4a0
[ +0.000006] vfs_write+0x5d6/0xdf0
[ +0.000005] ? fd_install+0x180/0x350
[ +0.000005] ? __pfx_vfs_write+0x10/0xA10
[ +0.000004] ? do_fcntl+0x52c/0xcd0
[ +0.000004] ? kasan_save_track+0x13/0x60
[ +0.000003] ? kasan_save_free_info+0x37/0x60
[ +0.000006] ksys_write+0xfa/0x1d0
[ +0.000003] ? __pfx_ksys_write+0x10/0x10
[ +0.000002] ? __x64_sys_fcntl+0x121/0x180
[ +0.000004] ? _raw_spin_lock+0x87/0xe0
[ +0.000005] do_syscall_64+0x80/0x170
[ +0.000007] ? _raw_spin_lock+0x87/0xe0
[ +0.000004] ? __pfx__raw_spin_lock+0x10/0x10
[ +0.000003] ? file_close_fd_locked+0x167/0x230
[ +0.000005] ? syscall_exit_to_user_mode+0x7d/0x220
[ +0.000005] ? do_syscall_64+0x8c/0x170
[ +0.000004] ? do_syscall_64+0x8c/0x170
[ +0.000003] ? do_syscall_64+0x8c/0x170
[ +0.000003] ? fput+0x1a/0x2c0
[ +0.000004] ? filp_close+0x19/0x30
[ +0.000004] ? do_dup2+0x25a/0x4c0
[ +0.000004] ? __x64_sys_dup2+0x6e/0x2e0
[ +0.000002] ? syscall_exit_to_user_mode+0x7d/0x220
[ +0.000004] ? do_syscall_64+0x8c/0x170
[ +0.000003] ? __count_memcg_events+0x113/0x380
[ +0.000005] ? handle_mm_fault+0x136/0x820
[ +0.000005] ? do_user_addr_fault+0x444/0xa80
[ +0.000004] ? clear_bhb_loop+0x25/0x80
[ +0.000004] ? clear_bhb_loop+0x25/0x80
[ +0.000002] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ +0.000005] RIP: 0033:0x7f2033593154 |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix out-of-bound access when z_erofs_gbuf_growsize() partially fails
If z_erofs_gbuf_growsize() partially fails on a global buffer due to
memory allocation failure or fault injection (as reported by syzbot [1]),
new pages need to be freed by comparing to the existing pages to avoid
memory leaks.
However, the old gbuf->pages[] array may not be large enough, which can
lead to null-ptr-deref or out-of-bound access.
Fix this by checking against gbuf->nrpages in advance.
[1] https://lore.kernel.org/r/000000000000f7b96e062018c6e3@google.com |
| In the Linux kernel, the following vulnerability has been resolved:
igb: cope with large MAX_SKB_FRAGS
Sabrina reports that the igb driver does not cope well with large
MAX_SKB_FRAG values: setting MAX_SKB_FRAG to 45 causes payload
corruption on TX.
An easy reproducer is to run ssh to connect to the machine. With
MAX_SKB_FRAGS=17 it works, with MAX_SKB_FRAGS=45 it fails. This has
been reported originally in
https://bugzilla.redhat.com/show_bug.cgi?id=2265320
The root cause of the issue is that the driver does not take into
account properly the (possibly large) shared info size when selecting
the ring layout, and will try to fit two packets inside the same 4K
page even when the 1st fraglist will trump over the 2nd head.
Address the issue by checking if 2K buffers are insufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1: Fix data corruption for degraded array with slow disk
read_balance() will avoid reading from slow disks as much as possible,
however, if valid data only lands in slow disks, and a new normal disk
is still in recovery, unrecovered data can be read:
raid1_read_request
read_balance
raid1_should_read_first
-> return false
choose_best_rdev
-> normal disk is not recovered, return -1
choose_bb_rdev
-> missing the checking of recovery, return the normal disk
-> read unrecovered data
Root cause is that the checking of recovery is missing in
choose_bb_rdev(). Hence add such checking to fix the problem.
Also fix similar problem in choose_slow_rdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a kernel verifier crash in stacksafe()
Daniel Hodges reported a kernel verifier crash when playing with sched-ext.
Further investigation shows that the crash is due to invalid memory access
in stacksafe(). More specifically, it is the following code:
if (exact != NOT_EXACT &&
old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
return false;
The 'i' iterates old->allocated_stack.
If cur->allocated_stack < old->allocated_stack the out-of-bound
access will happen.
To fix the issue add 'i >= cur->allocated_stack' check such that if
the condition is true, stacksafe() should fail. Otherwise,
cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en : Fix memory out-of-bounds in bnxt_fill_hw_rss_tbl()
A recent commit has modified the code in __bnxt_reserve_rings() to
set the default RSS indirection table to default only when the number
of RX rings is changing. While this works for newer firmware that
requires RX ring reservations, it causes the regression on older
firmware not requiring RX ring resrvations (BNXT_NEW_RM() returns
false).
With older firmware, RX ring reservations are not required and so
hw_resc->resv_rx_rings is not always set to the proper value. The
comparison:
if (old_rx_rings != bp->hw_resc.resv_rx_rings)
in __bnxt_reserve_rings() may be false even when the RX rings are
changing. This will cause __bnxt_reserve_rings() to skip setting
the default RSS indirection table to default to match the current
number of RX rings. This may later cause bnxt_fill_hw_rss_tbl() to
use an out-of-range index.
We already have bnxt_check_rss_tbl_no_rmgr() to handle exactly this
scenario. We just need to move it up in bnxt_need_reserve_rings()
to be called unconditionally when using older firmware. Without the
fix, if the TX rings are changing, we'll skip the
bnxt_check_rss_tbl_no_rmgr() call and __bnxt_reserve_rings() may also
skip the bnxt_set_dflt_rss_indir_tbl() call for the reason explained
in the last paragraph. Without setting the default RSS indirection
table to default, it causes the regression:
BUG: KASAN: slab-out-of-bounds in __bnxt_hwrm_vnic_set_rss+0xb79/0xe40
Read of size 2 at addr ffff8881c5809618 by task ethtool/31525
Call Trace:
__bnxt_hwrm_vnic_set_rss+0xb79/0xe40
bnxt_hwrm_vnic_rss_cfg_p5+0xf7/0x460
__bnxt_setup_vnic_p5+0x12e/0x270
__bnxt_open_nic+0x2262/0x2f30
bnxt_open_nic+0x5d/0xf0
ethnl_set_channels+0x5d4/0xb30
ethnl_default_set_doit+0x2f1/0x620 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: add missing check_func_arg_reg_off() to prevent out-of-bounds memory accesses
Currently, it's possible to pass in a modified CONST_PTR_TO_DYNPTR to
a global function as an argument. The adverse effects of this is that
BPF helpers can continue to make use of this modified
CONST_PTR_TO_DYNPTR from within the context of the global function,
which can unintentionally result in out-of-bounds memory accesses and
therefore compromise overall system stability i.e.
[ 244.157771] BUG: KASAN: slab-out-of-bounds in bpf_dynptr_data+0x137/0x140
[ 244.161345] Read of size 8 at addr ffff88810914be68 by task test_progs/302
[ 244.167151] CPU: 0 PID: 302 Comm: test_progs Tainted: G O E 6.10.0-rc3-00131-g66b586715063 #533
[ 244.174318] Call Trace:
[ 244.175787] <TASK>
[ 244.177356] dump_stack_lvl+0x66/0xa0
[ 244.179531] print_report+0xce/0x670
[ 244.182314] ? __virt_addr_valid+0x200/0x3e0
[ 244.184908] kasan_report+0xd7/0x110
[ 244.187408] ? bpf_dynptr_data+0x137/0x140
[ 244.189714] ? bpf_dynptr_data+0x137/0x140
[ 244.192020] bpf_dynptr_data+0x137/0x140
[ 244.194264] bpf_prog_b02a02fdd2bdc5fa_global_call_bpf_dynptr_data+0x22/0x26
[ 244.198044] bpf_prog_b0fe7b9d7dc3abde_callback_adjust_bpf_dynptr_reg_off+0x1f/0x23
[ 244.202136] bpf_user_ringbuf_drain+0x2c7/0x570
[ 244.204744] ? 0xffffffffc0009e58
[ 244.206593] ? __pfx_bpf_user_ringbuf_drain+0x10/0x10
[ 244.209795] bpf_prog_33ab33f6a804ba2d_user_ringbuf_callback_const_ptr_to_dynptr_reg_off+0x47/0x4b
[ 244.215922] bpf_trampoline_6442502480+0x43/0xe3
[ 244.218691] __x64_sys_prlimit64+0x9/0xf0
[ 244.220912] do_syscall_64+0xc1/0x1d0
[ 244.223043] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 244.226458] RIP: 0033:0x7ffa3eb8f059
[ 244.228582] Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8f 1d 0d 00 f7 d8 64 89 01 48
[ 244.241307] RSP: 002b:00007ffa3e9c6eb8 EFLAGS: 00000206 ORIG_RAX: 000000000000012e
[ 244.246474] RAX: ffffffffffffffda RBX: 00007ffa3e9c7cdc RCX: 00007ffa3eb8f059
[ 244.250478] RDX: 00007ffa3eb162b4 RSI: 0000000000000000 RDI: 00007ffa3e9c7fb0
[ 244.255396] RBP: 00007ffa3e9c6ed0 R08: 00007ffa3e9c76c0 R09: 0000000000000000
[ 244.260195] R10: 0000000000000000 R11: 0000000000000206 R12: ffffffffffffff80
[ 244.264201] R13: 000000000000001c R14: 00007ffc5d6b4260 R15: 00007ffa3e1c7000
[ 244.268303] </TASK>
Add a check_func_arg_reg_off() to the path in which the BPF verifier
verifies the arguments of global function arguments, specifically
those which take an argument of type ARG_PTR_TO_DYNPTR |
MEM_RDONLY. Also, process_dynptr_func() doesn't appear to perform any
explicit and strict type matching on the supplied register type, so
let's also enforce that a register either type PTR_TO_STACK or
CONST_PTR_TO_DYNPTR is by the caller. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv, bpf: Fix out-of-bounds issue when preparing trampoline image
We get the size of the trampoline image during the dry run phase and
allocate memory based on that size. The allocated image will then be
populated with instructions during the real patch phase. But after
commit 26ef208c209a ("bpf: Use arch_bpf_trampoline_size"), the `im`
argument is inconsistent in the dry run and real patch phase. This may
cause emit_imm in RV64 to generate a different number of instructions
when generating the 'im' address, potentially causing out-of-bounds
issues. Let's emit the maximum number of instructions for the "im"
address during dry run to fix this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: Fix the sorting functionality in iio_gts_build_avail_time_table
The sorting in iio_gts_build_avail_time_table is not working as intended.
It could result in an out-of-bounds access when the time is zero.
Here are more details:
1. When the gts->itime_table[i].time_us is zero, e.g., the time
sequence is `3, 0, 1`, the inner for-loop will not terminate and do
out-of-bound writes. This is because once `times[j] > new`, the value
`new` will be added in the current position and the `times[j]` will be
moved to `j+1` position, which makes the if-condition always hold.
Meanwhile, idx will be added one, making the loop keep running without
termination and out-of-bound write.
2. If none of the gts->itime_table[i].time_us is zero, the elements
will just be copied without being sorted as described in the comment
"Sort times from all tables to one and remove duplicates".
For more details, please refer to
https://lore.kernel.org/all/6dd0d822-046c-4dd2-9532-79d7ab96ec05@gmail.com. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix slab-out-of-bounds in ext4_mb_find_good_group_avg_frag_lists()
We can trigger a slab-out-of-bounds with the following commands:
mkfs.ext4 -F /dev/$disk 10G
mount /dev/$disk /tmp/test
echo 2147483647 > /sys/fs/ext4/$disk/mb_group_prealloc
echo test > /tmp/test/file && sync
==================================================================
BUG: KASAN: slab-out-of-bounds in ext4_mb_find_good_group_avg_frag_lists+0x8a/0x200 [ext4]
Read of size 8 at addr ffff888121b9d0f0 by task kworker/u2:0/11
CPU: 0 PID: 11 Comm: kworker/u2:0 Tainted: GL 6.7.0-next-20240118 #521
Call Trace:
dump_stack_lvl+0x2c/0x50
kasan_report+0xb6/0xf0
ext4_mb_find_good_group_avg_frag_lists+0x8a/0x200 [ext4]
ext4_mb_regular_allocator+0x19e9/0x2370 [ext4]
ext4_mb_new_blocks+0x88a/0x1370 [ext4]
ext4_ext_map_blocks+0x14f7/0x2390 [ext4]
ext4_map_blocks+0x569/0xea0 [ext4]
ext4_do_writepages+0x10f6/0x1bc0 [ext4]
[...]
==================================================================
The flow of issue triggering is as follows:
// Set s_mb_group_prealloc to 2147483647 via sysfs
ext4_mb_new_blocks
ext4_mb_normalize_request
ext4_mb_normalize_group_request
ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc
ext4_mb_regular_allocator
ext4_mb_choose_next_group
ext4_mb_choose_next_group_best_avail
mb_avg_fragment_size_order
order = fls(len) - 2 = 29
ext4_mb_find_good_group_avg_frag_lists
frag_list = &sbi->s_mb_avg_fragment_size[order]
if (list_empty(frag_list)) // Trigger SOOB!
At 4k block size, the length of the s_mb_avg_fragment_size list is 14,
but an oversized s_mb_group_prealloc is set, causing slab-out-of-bounds
to be triggered by an attempt to access an element at index 29.
Add a new attr_id attr_clusters_in_group with values in the range
[0, sbi->s_clusters_per_group] and declare mb_group_prealloc as
that type to fix the issue. In addition avoid returning an order
from mb_avg_fragment_size_order() greater than MB_NUM_ORDERS(sb)
and reduce some useless loops. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: rpi: Assign ->num before accessing ->hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer about the number
of elements in hws, so that it can warn when hws is accessed out of
bounds. As noted in that change, the __counted_by member must be
initialized with the number of elements before the first array access
happens, otherwise there will be a warning from each access prior to the
initialization because the number of elements is zero. This occurs in
raspberrypi_discover_clocks() due to ->num being assigned after ->hws
has been accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/bcm/clk-raspberrypi.c:374:4
index 3 is out of range for type 'struct clk_hw *[] __counted_by(num)' (aka 'struct clk_hw *[]')
Move the ->num initialization to before the first access of ->hws, which
clears up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Use variable length array instead of fixed size
Should fix smatch warning:
ntfs_set_label() error: __builtin_memcpy() 'uni->name' too small (20 vs 256) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: Avoid address calculations via out of bounds array indexing
Before request->channels[] can be used, request->n_channels must be set.
Additionally, address calculations for memory after the "channels" array
need to be calculated from the allocation base ("request") rather than
via the first "out of bounds" index of "channels", otherwise run-time
bounds checking will throw a warning. |
| In the Linux kernel, the following vulnerability has been resolved:
libbpf: Use OPTS_SET() macro in bpf_xdp_query()
When the feature_flags and xdp_zc_max_segs fields were added to the libbpf
bpf_xdp_query_opts, the code writing them did not use the OPTS_SET() macro.
This causes libbpf to write to those fields unconditionally, which means
that programs compiled against an older version of libbpf (with a smaller
size of the bpf_xdp_query_opts struct) will have its stack corrupted by
libbpf writing out of bounds.
The patch adding the feature_flags field has an early bail out if the
feature_flags field is not part of the opts struct (via the OPTS_HAS)
macro, but the patch adding xdp_zc_max_segs does not. For consistency, this
fix just changes the assignments to both fields to use the OPTS_SET()
macro. |