| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
spufs: fix a leak in spufs_create_context()
Leak fixes back in 2008 missed one case - if we are trying to set affinity
and spufs_mkdir() fails, we need to drop the reference to neighbor. |
| In the Linux kernel, the following vulnerability has been resolved:
udp: Fix memory accounting leak.
Matt Dowling reported a weird UDP memory usage issue.
Under normal operation, the UDP memory usage reported in /proc/net/sockstat
remains close to zero. However, it occasionally spiked to 524,288 pages
and never dropped. Moreover, the value doubled when the application was
terminated. Finally, it caused intermittent packet drops.
We can reproduce the issue with the script below [0]:
1. /proc/net/sockstat reports 0 pages
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 0
2. Run the script till the report reaches 524,288
# python3 test.py & sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> PAGE_SHIFT
3. Kill the socket and confirm the number never drops
# pkill python3 && sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 524288
4. (necessary since v6.0) Trigger proto_memory_pcpu_drain()
# python3 test.py & sleep 1 && pkill python3
5. The number doubles
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 1048577
The application set INT_MAX to SO_RCVBUF, which triggered an integer
overflow in udp_rmem_release().
When a socket is close()d, udp_destruct_common() purges its receive
queue and sums up skb->truesize in the queue. This total is calculated
and stored in a local unsigned integer variable.
The total size is then passed to udp_rmem_release() to adjust memory
accounting. However, because the function takes a signed integer
argument, the total size can wrap around, causing an overflow.
Then, the released amount is calculated as follows:
1) Add size to sk->sk_forward_alloc.
2) Round down sk->sk_forward_alloc to the nearest lower multiple of
PAGE_SIZE and assign it to amount.
3) Subtract amount from sk->sk_forward_alloc.
4) Pass amount >> PAGE_SHIFT to __sk_mem_reduce_allocated().
When the issue occurred, the total in udp_destruct_common() was 2147484480
(INT_MAX + 833), which was cast to -2147482816 in udp_rmem_release().
At 1) sk->sk_forward_alloc is changed from 3264 to -2147479552, and
2) sets -2147479552 to amount. 3) reverts the wraparound, so we don't
see a warning in inet_sock_destruct(). However, udp_memory_allocated
ends up doubling at 4).
Since commit 3cd3399dd7a8 ("net: implement per-cpu reserves for
memory_allocated"), memory usage no longer doubles immediately after
a socket is close()d because __sk_mem_reduce_allocated() caches the
amount in udp_memory_per_cpu_fw_alloc. However, the next time a UDP
socket receives a packet, the subtraction takes effect, causing UDP
memory usage to double.
This issue makes further memory allocation fail once the socket's
sk->sk_rmem_alloc exceeds net.ipv4.udp_rmem_min, resulting in packet
drops.
To prevent this issue, let's use unsigned int for the calculation and
call sk_forward_alloc_add() only once for the small delta.
Note that first_packet_length() also potentially has the same problem.
[0]:
from socket import *
SO_RCVBUFFORCE = 33
INT_MAX = (2 ** 31) - 1
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('', 0))
s.setsockopt(SOL_SOCKET, SO_RCVBUFFORCE, INT_MAX)
c = socket(AF_INET, SOCK_DGRAM)
c.connect(s.getsockname())
data = b'a' * 100
while True:
c.send(data) |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix memleak of nhc_pcpu_rth_output in fib_check_nh_v6_gw().
fib_check_nh_v6_gw() expects that fib6_nh_init() cleans up everything
when it fails.
Commit 7dd73168e273 ("ipv6: Always allocate pcpu memory in a fib6_nh")
moved fib_nh_common_init() before alloc_percpu_gfp() within fib6_nh_init()
but forgot to add cleanup for fib6_nh->nh_common.nhc_pcpu_rth_output in
case it fails to allocate fib6_nh->rt6i_pcpu, resulting in memleak.
Let's call fib_nh_common_release() and clear nhc_pcpu_rth_output in the
error path.
Note that we can remove the fib6_nh_release() call in nh_create_ipv6()
later in net-next.git. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix memory leak in aRFS after reset
Fix aRFS (accelerated Receive Flow Steering) structures memory leak by
adding a checker to verify if aRFS memory is already allocated while
configuring VSI. aRFS objects are allocated in two cases:
- as part of VSI initialization (at probe), and
- as part of reset handling
However, VSI reconfiguration executed during reset involves memory
allocation one more time, without prior releasing already allocated
resources. This led to the memory leak with the following signature:
[root@os-delivery ~]# cat /sys/kernel/debug/kmemleak
unreferenced object 0xff3c1ca7252e6000 (size 8192):
comm "kworker/0:0", pid 8, jiffies 4296833052
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
[<ffffffff991ec485>] __kmalloc_cache_noprof+0x275/0x340
[<ffffffffc0a6e06a>] ice_init_arfs+0x3a/0xe0 [ice]
[<ffffffffc09f1027>] ice_vsi_cfg_def+0x607/0x850 [ice]
[<ffffffffc09f244b>] ice_vsi_setup+0x5b/0x130 [ice]
[<ffffffffc09c2131>] ice_init+0x1c1/0x460 [ice]
[<ffffffffc09c64af>] ice_probe+0x2af/0x520 [ice]
[<ffffffff994fbcd3>] local_pci_probe+0x43/0xa0
[<ffffffff98f07103>] work_for_cpu_fn+0x13/0x20
[<ffffffff98f0b6d9>] process_one_work+0x179/0x390
[<ffffffff98f0c1e9>] worker_thread+0x239/0x340
[<ffffffff98f14abc>] kthread+0xcc/0x100
[<ffffffff98e45a6d>] ret_from_fork+0x2d/0x50
[<ffffffff98e083ba>] ret_from_fork_asm+0x1a/0x30
... |
| In the Linux kernel, the following vulnerability has been resolved:
drm/hyperv: Fix address space leak when Hyper-V DRM device is removed
When a Hyper-V DRM device is probed, the driver allocates MMIO space for
the vram, and maps it cacheable. If the device removed, or in the error
path for device probing, the MMIO space is released but no unmap is done.
Consequently the kernel address space for the mapping is leaked.
Fix this by adding iounmap() calls in the device removal path, and in the
error path during device probing. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix class @block_class's subsystem refcount leakage
blkcg_fill_root_iostats() iterates over @block_class's devices by
class_dev_iter_(init|next)(), but does not end iterating with
class_dev_iter_exit(), so causes the class's subsystem refcount leakage.
Fix by ending the iterating with class_dev_iter_exit(). |
| IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 could allow an authenticated user in federation environment, to cause a denial of service due to insufficient release of allocated memory after usage. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: fix memory leaks and invalid access at probe error path
Deinitialize at reverse order when probe fails.
When init_sw_vars fails, rtl_deinit_core should not be called, specially
now that it destroys the rtl_wq workqueue.
And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be
leaked.
Remove pci_set_drvdata call as it will already be cleaned up by the core
driver code and could lead to memory leaks too. cf. commit 8d450935ae7f
("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and
commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory"). |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: et8ek8: Don't strip remove function when driver is builtin
Using __exit for the remove function results in the remove callback
being discarded with CONFIG_VIDEO_ET8EK8=y. When such a device gets
unbound (e.g. using sysfs or hotplug), the driver is just removed
without the cleanup being performed. This results in resource leaks. Fix
it by compiling in the remove callback unconditionally.
This also fixes a W=1 modpost warning:
WARNING: modpost: drivers/media/i2c/et8ek8/et8ek8: section mismatch in reference: et8ek8_i2c_driver+0x10 (section: .data) -> et8ek8_remove (section: .exit.text) |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: fix memory leak during D3hot to D0 transition
If 'vfio_pci_core_device::needs_pm_restore' is set (PCI device does
not have No_Soft_Reset bit set in its PMCSR config register), then
the current PCI state will be saved locally in
'vfio_pci_core_device::pm_save' during D0->D3hot transition and same
will be restored back during D3hot->D0 transition.
For saving the PCI state locally, pci_store_saved_state() is being
used and the pci_load_and_free_saved_state() will free the allocated
memory.
But for reset related IOCTLs, vfio driver calls PCI reset-related
API's which will internally change the PCI power state back to D0. So,
when the guest resumes, then it will get the current state as D0 and it
will skip the call to vfio_pci_set_power_state() for changing the
power state to D0 explicitly. In this case, the memory pointed by
'pm_save' will never be freed. In a malicious sequence, the state changing
to D3hot followed by VFIO_DEVICE_RESET/VFIO_DEVICE_PCI_HOT_RESET can be
run in a loop and it can cause an OOM situation.
This patch frees the earlier allocated memory first before overwriting
'pm_save' to prevent the mentioned memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
kernel/resource: fix kfree() of bootmem memory again
Since commit ebff7d8f270d ("mem hotunplug: fix kfree() of bootmem
memory"), we could get a resource allocated during boot via
alloc_resource(). And it's required to release the resource using
free_resource(). Howerver, many people use kfree directly which will
result in kernel BUG. In order to fix this without fixing every call
site, just leak a couple of bytes in such corner case. |
| In autofile Audio File Library 0.3.6, there exists one memory leak vulnerability in printfileinfo, in printinfo.c, which allows an attacker to leak sensitive information via a crafted file. The printfileinfo function calls the copyrightstring function to get data, however, it dosn't use zero bytes to truncate the data. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. In versions prior to 7.1.2-0 and 6.9.13-26, in ImageMagick's `magick stream` command, specifying multiple consecutive `%d` format specifiers in a filename template causes a memory leak. Versions 7.1.2-0 and 6.9.13-26 fix the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: Remove broken autobind
Binding AX25 socket by using the autobind feature leads to memory leaks
in ax25_connect() and also refcount leaks in ax25_release(). Memory
leak was detected with kmemleak:
================================================================
unreferenced object 0xffff8880253cd680 (size 96):
backtrace:
__kmalloc_node_track_caller_noprof (./include/linux/kmemleak.h:43)
kmemdup_noprof (mm/util.c:136)
ax25_rt_autobind (net/ax25/ax25_route.c:428)
ax25_connect (net/ax25/af_ax25.c:1282)
__sys_connect_file (net/socket.c:2045)
__sys_connect (net/socket.c:2064)
__x64_sys_connect (net/socket.c:2067)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
================================================================
When socket is bound, refcounts must be incremented the way it is done
in ax25_bind() and ax25_setsockopt() (SO_BINDTODEVICE). In case of
autobind, the refcounts are not incremented.
This bug leads to the following issue reported by Syzkaller:
================================================================
ax25_connect(): syz-executor318 uses autobind, please contact jreuter@yaina.de
------------[ cut here ]------------
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 0 PID: 5317 at lib/refcount.c:31 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:31
Modules linked in:
CPU: 0 UID: 0 PID: 5317 Comm: syz-executor318 Not tainted 6.14.0-rc4-syzkaller-00278-gece144f151ac #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:31
...
Call Trace:
<TASK>
__refcount_dec include/linux/refcount.h:336 [inline]
refcount_dec include/linux/refcount.h:351 [inline]
ref_tracker_free+0x6af/0x7e0 lib/ref_tracker.c:236
netdev_tracker_free include/linux/netdevice.h:4302 [inline]
netdev_put include/linux/netdevice.h:4319 [inline]
ax25_release+0x368/0x960 net/ax25/af_ax25.c:1080
__sock_release net/socket.c:647 [inline]
sock_close+0xbc/0x240 net/socket.c:1398
__fput+0x3e9/0x9f0 fs/file_table.c:464
__do_sys_close fs/open.c:1580 [inline]
__se_sys_close fs/open.c:1565 [inline]
__x64_sys_close+0x7f/0x110 fs/open.c:1565
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
</TASK>
================================================================
Considering the issues above and the comments left in the code that say:
"check if we can remove this feature. It is broken."; "autobinding in this
may or may not work"; - it is better to completely remove this feature than
to fix it because it is broken and leads to various kinds of memory bugs.
Now calling connect() without first binding socket will result in an
error (-EINVAL). Userspace software that relies on the autobind feature
might get broken. However, this feature does not seem widely used with
this specific driver as it was not reliable at any point of time, and it
is already broken anyway. E.g. ax25-tools and ax25-apps packages for
popular distributions do not use the autobind feature for AF_AX25.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: Fix possible memory leak in ptp_clock_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff88800906c618 (size 8):
comm "i2c-idt82p33931", pid 4421, jiffies 4294948083 (age 13.188s)
hex dump (first 8 bytes):
70 74 70 30 00 00 00 00 ptp0....
backtrace:
[<00000000312ed458>] __kmalloc_track_caller+0x19f/0x3a0
[<0000000079f6e2ff>] kvasprintf+0xb5/0x150
[<0000000026aae54f>] kvasprintf_const+0x60/0x190
[<00000000f323a5f7>] kobject_set_name_vargs+0x56/0x150
[<000000004e35abdd>] dev_set_name+0xc0/0x100
[<00000000f20cfe25>] ptp_clock_register+0x9f4/0xd30 [ptp]
[<000000008bb9f0de>] idt82p33_probe.cold+0x8b6/0x1561 [ptp_idt82p33]
When posix_clock_register() returns an error, the name allocated
in dev_set_name() will be leaked, the put_device() should be used
to give up the device reference, then the name will be freed in
kobject_cleanup() and other memory will be freed in ptp_clock_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Fix another memory leak in error handling paths
Memory allocated by 'vmbus_alloc_ring()' at the beginning of the probe
function is never freed in the error handling path.
Add the missing 'vmbus_free_ring()' call.
Note that it is already freed in the .remove function. |
| Memory leak vulnerability in Mali GPU Kernel Driver in Midgard GPU Kernel Driver all versions from r6p0 - r32p0, Bifrost GPU Kernel Driver all versions from r0p0 - r42p0, Valhall GPU Kernel Driver all versions from r19p0 - r42p0, and Avalon GPU Kernel Driver all versions from r41p0 - r42p0 allows a non-privileged user to make valid GPU processing operations that expose sensitive kernel metadata. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mctp: unshare packets when reassembling
Ensure that the frag_list used for reassembly isn't shared with other
packets. This avoids incorrect reassembly when packets are cloned, and
prevents a memory leak due to circular references between fragments and
their skb_shared_info.
The upcoming MCTP-over-USB driver uses skb_clone which can trigger the
problem - other MCTP drivers don't share SKBs.
A kunit test is added to reproduce the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
netmem: prevent TX of unreadable skbs
Currently on stable trees we have support for netmem/devmem RX but not
TX. It is not safe to forward/redirect an RX unreadable netmem packet
into the device's TX path, as the device may call dma-mapping APIs on
dma addrs that should not be passed to it.
Fix this by preventing the xmit of unreadable skbs.
Tested by configuring tc redirect:
sudo tc qdisc add dev eth1 ingress
sudo tc filter add dev eth1 ingress protocol ip prio 1 flower ip_proto \
tcp src_ip 192.168.1.12 action mirred egress redirect dev eth1
Before, I see unreadable skbs in the driver's TX path passed to dma
mapping APIs.
After, I don't see unreadable skbs in the driver's TX path passed to dma
mapping APIs. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix tmpfile leak
Missed an error cleanup. |