| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check rcu_read_lock_trace_held() in bpf_map_lookup_percpu_elem()
bpf_map_lookup_percpu_elem() helper is also available for sleepable bpf
program. When BPF JIT is disabled or under 32-bit host,
bpf_map_lookup_percpu_elem() will not be inlined. Using it in a
sleepable bpf program will trigger the warning in
bpf_map_lookup_percpu_elem(), because the bpf program only holds
rcu_read_lock_trace lock. Therefore, add the missed check. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix huge_pmd_unshare() vs GUP-fast race
huge_pmd_unshare() drops a reference on a page table that may have
previously been shared across processes, potentially turning it into a
normal page table used in another process in which unrelated VMAs can
afterwards be installed.
If this happens in the middle of a concurrent gup_fast(), gup_fast() could
end up walking the page tables of another process. While I don't see any
way in which that immediately leads to kernel memory corruption, it is
really weird and unexpected.
Fix it with an explicit broadcast IPI through tlb_remove_table_sync_one(),
just like we do in khugepaged when removing page tables for a THP
collapse. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: unshare page tables during VMA split, not before
Currently, __split_vma() triggers hugetlb page table unsharing through
vm_ops->may_split(). This happens before the VMA lock and rmap locks are
taken - which is too early, it allows racing VMA-locked page faults in our
process and racing rmap walks from other processes to cause page tables to
be shared again before we actually perform the split.
Fix it by explicitly calling into the hugetlb unshare logic from
__split_vma() in the same place where THP splitting also happens. At that
point, both the VMA and the rmap(s) are write-locked.
An annoying detail is that we can now call into the helper
hugetlb_unshare_pmds() from two different locking contexts:
1. from hugetlb_split(), holding:
- mmap lock (exclusively)
- VMA lock
- file rmap lock (exclusively)
2. hugetlb_unshare_all_pmds(), which I think is designed to be able to
call us with only the mmap lock held (in shared mode), but currently
only runs while holding mmap lock (exclusively) and VMA lock
Backporting note:
This commit fixes a racy protection that was introduced in commit
b30c14cd6102 ("hugetlb: unshare some PMDs when splitting VMAs"); that
commit claimed to fix an issue introduced in 5.13, but it should actually
also go all the way back.
[jannh@google.com: v2] |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix null-ptr-deref in jfs_ioc_trim
[ Syzkaller Report ]
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000087: 0000 [#1
KASAN: null-ptr-deref in range [0x0000000000000438-0x000000000000043f]
CPU: 2 UID: 0 PID: 10614 Comm: syz-executor.0 Not tainted
6.13.0-rc6-gfbfd64d25c7a-dirty #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Sched_ext: serialise (enabled+all), task: runnable_at=-30ms
RIP: 0010:jfs_ioc_trim+0x34b/0x8f0
Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93
90 82 fe ff 4c 89 ff 31 f6
RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206
RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a
RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001
RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000
R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438
FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die_body+0x61/0xb0
? die_addr+0xb1/0xe0
? exc_general_protection+0x333/0x510
? asm_exc_general_protection+0x26/0x30
? jfs_ioc_trim+0x34b/0x8f0
jfs_ioctl+0x3c8/0x4f0
? __pfx_jfs_ioctl+0x10/0x10
? __pfx_jfs_ioctl+0x10/0x10
__se_sys_ioctl+0x269/0x350
? __pfx___se_sys_ioctl+0x10/0x10
? do_syscall_64+0xfb/0x210
do_syscall_64+0xee/0x210
? syscall_exit_to_user_mode+0x1e0/0x330
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe51f4903ad
Code: c3 e8 a7 2b 00 00 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 89 f8 48
89 f7 48 89 d6 48 89 ca 4d
RSP: 002b:00007fe5202250c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fe51f5cbf80 RCX: 00007fe51f4903ad
RDX: 0000000020000680 RSI: 00000000c0185879 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe520225640
R13: 000000000000000e R14: 00007fe51f44fca0 R15: 00007fe52021d000
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:jfs_ioc_trim+0x34b/0x8f0
Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93
90 82 fe ff 4c 89 ff 31 f6
RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206
RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a
RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001
RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000
R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438
FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Kernel panic - not syncing: Fatal exception
[ Analysis ]
We believe that we have found a concurrency bug in the `fs/jfs` module
that results in a null pointer dereference. There is a closely related
issue which has been fixed:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6c1b3599b2feb5c7291f5ac3a36e5fa7cedb234
... but, unfortunately, the accepted patch appears to still be
susceptible to a null pointer dereference under some interleavings.
To trigger the bug, we think that `JFS_SBI(ipbmap->i_sb)->bmap` is set
to NULL in `dbFreeBits` and then dereferenced in `jfs_ioc_trim`. This
bug manifests quite rarely under normal circumstances, but is
triggereable from a syz-program. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix double free in delayed_free
The double free could happen in the following path.
exfat_create_upcase_table()
exfat_create_upcase_table() : return error
exfat_free_upcase_table() : free ->vol_utbl
exfat_load_default_upcase_table : return error
exfat_kill_sb()
delayed_free()
exfat_free_upcase_table() <--------- double free
This patch set ->vol_util as NULL after freeing it. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction
The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last
deref") simplified cm_id resource management by freeing cm_id once all
references to the cm_id were removed. The references are removed either
upon completion of iw_cm event handlers or when the application destroys
the cm_id. This commit introduced the use-after-free condition where
cm_id_private object could still be in use by event handler works during
the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a
use-after-free related to destroying CM IDs") addressed this use-after-
free by flushing all pending works at the cm_id destruction.
However, still another use-after-free possibility remained. It happens
with the work objects allocated for each cm_id_priv within
alloc_work_entries() during cm_id creation, and subsequently freed in
dealloc_work_entries() once all references to the cm_id are removed.
If the cm_id's last reference is decremented in the event handler work,
the work object for the work itself gets removed, and causes the use-
after-free BUG below:
BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250
Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091
CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
Workqueue: 0x0 (iw_cm_wq)
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x90
print_report+0x174/0x554
? __virt_addr_valid+0x208/0x430
? __pwq_activate_work+0x1ff/0x250
kasan_report+0xae/0x170
? __pwq_activate_work+0x1ff/0x250
__pwq_activate_work+0x1ff/0x250
pwq_dec_nr_in_flight+0x8c5/0xfb0
process_one_work+0xc11/0x1460
? __pfx_process_one_work+0x10/0x10
? assign_work+0x16c/0x240
worker_thread+0x5ef/0xfd0
? __pfx_worker_thread+0x10/0x10
kthread+0x3b0/0x770
? __pfx_kthread+0x10/0x10
? rcu_is_watching+0x11/0xb0
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 147416:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
alloc_work_entries+0xa9/0x260 [iw_cm]
iw_cm_connect+0x23/0x4a0 [iw_cm]
rdma_connect_locked+0xbfd/0x1920 [rdma_cm]
nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma]
cma_cm_event_handler+0xae/0x320 [rdma_cm]
cma_work_handler+0x106/0x1b0 [rdma_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 147091:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kfree+0x13a/0x4b0
dealloc_work_entries+0x125/0x1f0 [iw_cm]
iwcm_deref_id+0x6f/0xa0 [iw_cm]
cm_work_handler+0x136/0x1ba0 [iw_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x2c/0x50
kasan_record_aux_stack+0xa3/0xb0
__queue_work+0x2ff/0x1390
queue_work_on+0x67/0xc0
cm_event_handler+0x46a/0x820 [iw_cm]
siw_cm_upcall+0x330/0x650 [siw]
siw_cm_work_handler+0x6b9/0x2b20 [siw]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
This BUG is reproducible by repeating the blktests test case nvme/061
for the rdma transport and the siw driver.
To avoid the use-after-free of cm_id_private work objects, ensure that
the last reference to the cm_id is decremented not in the event handler
works, but in the cm_id destruction context. For that purpose, mo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipc: fix to protect IPCS lookups using RCU
syzbot reported that it discovered a use-after-free vulnerability, [0]
[0]: https://lore.kernel.org/all/67af13f8.050a0220.21dd3.0038.GAE@google.com/
idr_for_each() is protected by rwsem, but this is not enough. If it is
not protected by RCU read-critical region, when idr_for_each() calls
radix_tree_node_free() through call_rcu() to free the radix_tree_node
structure, the node will be freed immediately, and when reading the next
node in radix_tree_for_each_slot(), the already freed memory may be read.
Therefore, we need to add code to make sure that idr_for_each() is
protected within the RCU read-critical region when we call it in
shm_destroy_orphaned(). |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix fb_set_var to prevent null-ptr-deref in fb_videomode_to_var
If fb_add_videomode() in fb_set_var() fails to allocate memory for
fb_videomode, later it may lead to a null-ptr dereference in
fb_videomode_to_var(), as the fb_info is registered while not having the
mode in modelist that is expected to be there, i.e. the one that is
described in fb_info->var.
================================================================
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901
Call Trace:
display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929
fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071
resize_screen drivers/tty/vt/vt.c:1176 [inline]
vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263
fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720
fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776
do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128
fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
================================================================
The reason is that fb_info->var is being modified in fb_set_var(), and
then fb_videomode_to_var() is called. If it fails to add the mode to
fb_info->modelist, fb_set_var() returns error, but does not restore the
old value of fb_info->var. Restore fb_info->var on failure the same way
it is done earlier in the function.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k_htc: Abort software beacon handling if disabled
A malicious USB device can send a WMI_SWBA_EVENTID event from an
ath9k_htc-managed device before beaconing has been enabled. This causes
a device-by-zero error in the driver, leading to either a crash or an
out of bounds read.
Prevent this by aborting the handling in ath9k_htc_swba() if beacons are
not enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Avoid using sk_socket after free when sending
The sk->sk_socket is not locked or referenced in backlog thread, and
during the call to skb_send_sock(), there is a race condition with
the release of sk_socket. All types of sockets(tcp/udp/unix/vsock)
will be affected.
Race conditions:
'''
CPU0 CPU1
backlog::skb_send_sock
sendmsg_unlocked
sock_sendmsg
sock_sendmsg_nosec
close(fd):
...
ops->release() -> sock_map_close()
sk_socket->ops = NULL
free(socket)
sock->ops->sendmsg
^
panic here
'''
The ref of psock become 0 after sock_map_close() executed.
'''
void sock_map_close()
{
...
if (likely(psock)) {
...
// !! here we remove psock and the ref of psock become 0
sock_map_remove_links(sk, psock)
psock = sk_psock_get(sk);
if (unlikely(!psock))
goto no_psock; <=== Control jumps here via goto
...
cancel_delayed_work_sync(&psock->work); <=== not executed
sk_psock_put(sk, psock);
...
}
'''
Based on the fact that we already wait for the workqueue to finish in
sock_map_close() if psock is held, we simply increase the psock
reference count to avoid race conditions.
With this patch, if the backlog thread is running, sock_map_close() will
wait for the backlog thread to complete and cancel all pending work.
If no backlog running, any pending work that hasn't started by then will
fail when invoked by sk_psock_get(), as the psock reference count have
been zeroed, and sk_psock_drop() will cancel all jobs via
cancel_delayed_work_sync().
In summary, we require synchronization to coordinate the backlog thread
and close() thread.
The panic I catched:
'''
Workqueue: events sk_psock_backlog
RIP: 0010:sock_sendmsg+0x21d/0x440
RAX: 0000000000000000 RBX: ffffc9000521fad8 RCX: 0000000000000001
...
Call Trace:
<TASK>
? die_addr+0x40/0xa0
? exc_general_protection+0x14c/0x230
? asm_exc_general_protection+0x26/0x30
? sock_sendmsg+0x21d/0x440
? sock_sendmsg+0x3e0/0x440
? __pfx_sock_sendmsg+0x10/0x10
__skb_send_sock+0x543/0xb70
sk_psock_backlog+0x247/0xb80
...
''' |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: aqc111: fix error handling of usbnet read calls
Syzkaller, courtesy of syzbot, identified an error (see report [1]) in
aqc111 driver, caused by incomplete sanitation of usb read calls'
results. This problem is quite similar to the one fixed in commit
920a9fa27e78 ("net: asix: add proper error handling of usb read errors").
For instance, usbnet_read_cmd() may read fewer than 'size' bytes,
even if the caller expected the full amount, and aqc111_read_cmd()
will not check its result properly. As [1] shows, this may lead
to MAC address in aqc111_bind() being only partly initialized,
triggering KMSAN warnings.
Fix the issue by verifying that the number of bytes read is
as expected and not less.
[1] Partial syzbot report:
BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:208 [inline]
BUG: KMSAN: uninit-value in usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830
is_valid_ether_addr include/linux/etherdevice.h:208 [inline]
usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830
usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:-1 [inline]
really_probe+0x4d1/0xd90 drivers/base/dd.c:658
__driver_probe_device+0x268/0x380 drivers/base/dd.c:800
...
Uninit was stored to memory at:
dev_addr_mod+0xb0/0x550 net/core/dev_addr_lists.c:582
__dev_addr_set include/linux/netdevice.h:4874 [inline]
eth_hw_addr_set include/linux/etherdevice.h:325 [inline]
aqc111_bind+0x35f/0x1150 drivers/net/usb/aqc111.c:717
usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772
usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396
...
Uninit was stored to memory at:
ether_addr_copy include/linux/etherdevice.h:305 [inline]
aqc111_read_perm_mac drivers/net/usb/aqc111.c:663 [inline]
aqc111_bind+0x794/0x1150 drivers/net/usb/aqc111.c:713
usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772
usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:-1 [inline]
...
Local variable buf.i created at:
aqc111_read_perm_mac drivers/net/usb/aqc111.c:656 [inline]
aqc111_bind+0x221/0x1150 drivers/net/usb/aqc111.c:713
usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix hang when cma_netevent_callback fails to queue_work
The cited commit fixed a crash when cma_netevent_callback was called for
a cma_id while work on that id from a previous call had not yet started.
The work item was re-initialized in the second call, which corrupted the
work item currently in the work queue.
However, it left a problem when queue_work fails (because the item is
still pending in the work queue from a previous call). In this case,
cma_id_put (which is called in the work handler) is therefore not
called. This results in a userspace process hang (zombie process).
Fix this by calling cma_id_put() if queue_work fails. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: mscc: Fix memory leak when using one step timestamping
Fix memory leak when running one-step timestamping. When running
one-step sync timestamping, the HW is configured to insert the TX time
into the frame, so there is no reason to keep the skb anymore. As in
this case the HW will never generate an interrupt to say that the frame
was timestamped, then the frame will never released.
Fix this by freeing the frame in case of one-step timestamping. |
| In the Linux kernel, the following vulnerability has been resolved:
calipso: Don't call calipso functions for AF_INET sk.
syzkaller reported a null-ptr-deref in txopt_get(). [0]
The offset 0x70 was of struct ipv6_txoptions in struct ipv6_pinfo,
so struct ipv6_pinfo was NULL there.
However, this never happens for IPv6 sockets as inet_sk(sk)->pinet6
is always set in inet6_create(), meaning the socket was not IPv6 one.
The root cause is missing validation in netlbl_conn_setattr().
netlbl_conn_setattr() switches branches based on struct
sockaddr.sa_family, which is passed from userspace. However,
netlbl_conn_setattr() does not check if the address family matches
the socket.
The syzkaller must have called connect() for an IPv6 address on
an IPv4 socket.
We have a proper validation in tcp_v[46]_connect(), but
security_socket_connect() is called in the earlier stage.
Let's copy the validation to netlbl_conn_setattr().
[0]:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077]
CPU: 2 UID: 0 PID: 12928 Comm: syz.9.1677 Not tainted 6.12.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:txopt_get include/net/ipv6.h:390 [inline]
RIP: 0010:
Code: 02 00 00 49 8b ac 24 f8 02 00 00 e8 84 69 2a fd e8 ff 00 16 fd 48 8d 7d 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 53 02 00 00 48 8b 6d 70 48 85 ed 0f 84 ab 01 00
RSP: 0018:ffff88811b8afc48 EFLAGS: 00010212
RAX: dffffc0000000000 RBX: 1ffff11023715f8a RCX: ffffffff841ab00c
RDX: 000000000000000e RSI: ffffc90007d9e000 RDI: 0000000000000070
RBP: 0000000000000000 R08: ffffed1023715f9d R09: ffffed1023715f9e
R10: ffffed1023715f9d R11: 0000000000000003 R12: ffff888123075f00
R13: ffff88810245bd80 R14: ffff888113646780 R15: ffff888100578a80
FS: 00007f9019bd7640(0000) GS:ffff8882d2d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f901b927bac CR3: 0000000104788003 CR4: 0000000000770ef0
PKRU: 80000000
Call Trace:
<TASK>
calipso_sock_setattr+0x56/0x80 net/netlabel/netlabel_calipso.c:557
netlbl_conn_setattr+0x10c/0x280 net/netlabel/netlabel_kapi.c:1177
selinux_netlbl_socket_connect_helper+0xd3/0x1b0 security/selinux/netlabel.c:569
selinux_netlbl_socket_connect_locked security/selinux/netlabel.c:597 [inline]
selinux_netlbl_socket_connect+0xb6/0x100 security/selinux/netlabel.c:615
selinux_socket_connect+0x5f/0x80 security/selinux/hooks.c:4931
security_socket_connect+0x50/0xa0 security/security.c:4598
__sys_connect_file+0xa4/0x190 net/socket.c:2067
__sys_connect+0x12c/0x170 net/socket.c:2088
__do_sys_connect net/socket.c:2098 [inline]
__se_sys_connect net/socket.c:2095 [inline]
__x64_sys_connect+0x73/0xb0 net/socket.c:2095
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xaa/0x1b0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f901b61a12d
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f9019bd6fa8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 00007f901b925fa0 RCX: 00007f901b61a12d
RDX: 000000000000001c RSI: 0000200000000140 RDI: 0000000000000003
RBP: 00007f901b701505 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f901b5b62a0 R15: 00007f9019bb7000
</TASK>
Modules linked in: |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: marvell/cesa - Handle zero-length skcipher requests
Do not access random memory for zero-length skcipher requests.
Just return 0. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: Discard stale CPU state when handling SME traps
The logic for handling SME traps manipulates saved FPSIMD/SVE/SME state
incorrectly, and a race with preemption can result in a task having
TIF_SME set and TIF_FOREIGN_FPSTATE clear even though the live CPU state
is stale (e.g. with SME traps enabled). This can result in warnings from
do_sme_acc() where SME traps are not expected while TIF_SME is set:
| /* With TIF_SME userspace shouldn't generate any traps */
| if (test_and_set_thread_flag(TIF_SME))
| WARN_ON(1);
This is very similar to the SVE issue we fixed in commit:
751ecf6afd6568ad ("arm64/sve: Discard stale CPU state when handling SVE traps")
The race can occur when the SME trap handler is preempted before and
after manipulating the saved FPSIMD/SVE/SME state, starting and ending on
the same CPU, e.g.
| void do_sme_acc(unsigned long esr, struct pt_regs *regs)
| {
| // Trap on CPU 0 with TIF_SME clear, SME traps enabled
| // task->fpsimd_cpu is 0.
| // per_cpu_ptr(&fpsimd_last_state, 0) is task.
|
| ...
|
| // Preempted; migrated from CPU 0 to CPU 1.
| // TIF_FOREIGN_FPSTATE is set.
|
| get_cpu_fpsimd_context();
|
| /* With TIF_SME userspace shouldn't generate any traps */
| if (test_and_set_thread_flag(TIF_SME))
| WARN_ON(1);
|
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
| unsigned long vq_minus_one =
| sve_vq_from_vl(task_get_sme_vl(current)) - 1;
| sme_set_vq(vq_minus_one);
|
| fpsimd_bind_task_to_cpu();
| }
|
| put_cpu_fpsimd_context();
|
| // Preempted; migrated from CPU 1 to CPU 0.
| // task->fpsimd_cpu is still 0
| // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then:
| // - Stale HW state is reused (with SME traps enabled)
| // - TIF_FOREIGN_FPSTATE is cleared
| // - A return to userspace skips HW state restore
| }
Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set
by calling fpsimd_flush_task_state() to detach from the saved CPU
state. This ensures that a subsequent context switch will not reuse the
stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the
new state to be reloaded from memory prior to a return to userspace.
Note: this was originallly posted as [1].
[ Rutland: rewrite commit message ] |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: handle hdr_first_de() return value
The hdr_first_de() function returns a pointer to a struct NTFS_DE. This
pointer may be NULL. To handle the NULL error effectively, it is important
to implement an error handler. This will help manage potential errors
consistently.
Additionally, error handling for the return value already exists at other
points where this function is called.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix ktls panic with sockmap
[ 2172.936997] ------------[ cut here ]------------
[ 2172.936999] kernel BUG at lib/iov_iter.c:629!
......
[ 2172.944996] PKRU: 55555554
[ 2172.945155] Call Trace:
[ 2172.945299] <TASK>
[ 2172.945428] ? die+0x36/0x90
[ 2172.945601] ? do_trap+0xdd/0x100
[ 2172.945795] ? iov_iter_revert+0x178/0x180
[ 2172.946031] ? iov_iter_revert+0x178/0x180
[ 2172.946267] ? do_error_trap+0x7d/0x110
[ 2172.946499] ? iov_iter_revert+0x178/0x180
[ 2172.946736] ? exc_invalid_op+0x50/0x70
[ 2172.946961] ? iov_iter_revert+0x178/0x180
[ 2172.947197] ? asm_exc_invalid_op+0x1a/0x20
[ 2172.947446] ? iov_iter_revert+0x178/0x180
[ 2172.947683] ? iov_iter_revert+0x5c/0x180
[ 2172.947913] tls_sw_sendmsg_locked.isra.0+0x794/0x840
[ 2172.948206] tls_sw_sendmsg+0x52/0x80
[ 2172.948420] ? inet_sendmsg+0x1f/0x70
[ 2172.948634] __sys_sendto+0x1cd/0x200
[ 2172.948848] ? find_held_lock+0x2b/0x80
[ 2172.949072] ? syscall_trace_enter+0x140/0x270
[ 2172.949330] ? __lock_release.isra.0+0x5e/0x170
[ 2172.949595] ? find_held_lock+0x2b/0x80
[ 2172.949817] ? syscall_trace_enter+0x140/0x270
[ 2172.950211] ? lockdep_hardirqs_on_prepare+0xda/0x190
[ 2172.950632] ? ktime_get_coarse_real_ts64+0xc2/0xd0
[ 2172.951036] __x64_sys_sendto+0x24/0x30
[ 2172.951382] do_syscall_64+0x90/0x170
......
After calling bpf_exec_tx_verdict(), the size of msg_pl->sg may increase,
e.g., when the BPF program executes bpf_msg_push_data().
If the BPF program sets cork_bytes and sg.size is smaller than cork_bytes,
it will return -ENOSPC and attempt to roll back to the non-zero copy
logic. However, during rollback, msg->msg_iter is reset, but since
msg_pl->sg.size has been increased, subsequent executions will exceed the
actual size of msg_iter.
'''
iov_iter_revert(&msg->msg_iter, msg_pl->sg.size - orig_size);
'''
The changes in this commit are based on the following considerations:
1. When cork_bytes is set, rolling back to non-zero copy logic is
pointless and can directly go to zero-copy logic.
2. We can not calculate the correct number of bytes to revert msg_iter.
Assume the original data is "abcdefgh" (8 bytes), and after 3 pushes
by the BPF program, it becomes 11-byte data: "abc?de?fgh?".
Then, we set cork_bytes to 6, which means the first 6 bytes have been
processed, and the remaining 5 bytes "?fgh?" will be cached until the
length meets the cork_bytes requirement.
However, some data in "?fgh?" is not within 'sg->msg_iter'
(but in msg_pl instead), especially the data "?" we pushed.
So it doesn't seem as simple as just reverting through an offset of
msg_iter.
3. For non-TLS sockets in tcp_bpf_sendmsg, when a "cork" situation occurs,
the user-space send() doesn't return an error, and the returned length is
the same as the input length parameter, even if some data is cached.
Additionally, I saw that the current non-zero-copy logic for handling
corking is written as:
'''
line 1177
else if (ret != -EAGAIN) {
if (ret == -ENOSPC)
ret = 0;
goto send_end;
'''
So it's ok to just return 'copied' without error when a "cork" situation
occurs. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix panic when calling skb_linearize
The panic can be reproduced by executing the command:
./bench sockmap -c 2 -p 1 -a --rx-verdict-ingress --rx-strp 100000
Then a kernel panic was captured:
'''
[ 657.460555] kernel BUG at net/core/skbuff.c:2178!
[ 657.462680] Tainted: [W]=WARN
[ 657.463287] Workqueue: events sk_psock_backlog
...
[ 657.469610] <TASK>
[ 657.469738] ? die+0x36/0x90
[ 657.469916] ? do_trap+0x1d0/0x270
[ 657.470118] ? pskb_expand_head+0x612/0xf40
[ 657.470376] ? pskb_expand_head+0x612/0xf40
[ 657.470620] ? do_error_trap+0xa3/0x170
[ 657.470846] ? pskb_expand_head+0x612/0xf40
[ 657.471092] ? handle_invalid_op+0x2c/0x40
[ 657.471335] ? pskb_expand_head+0x612/0xf40
[ 657.471579] ? exc_invalid_op+0x2d/0x40
[ 657.471805] ? asm_exc_invalid_op+0x1a/0x20
[ 657.472052] ? pskb_expand_head+0xd1/0xf40
[ 657.472292] ? pskb_expand_head+0x612/0xf40
[ 657.472540] ? lock_acquire+0x18f/0x4e0
[ 657.472766] ? find_held_lock+0x2d/0x110
[ 657.472999] ? __pfx_pskb_expand_head+0x10/0x10
[ 657.473263] ? __kmalloc_cache_noprof+0x5b/0x470
[ 657.473537] ? __pfx___lock_release.isra.0+0x10/0x10
[ 657.473826] __pskb_pull_tail+0xfd/0x1d20
[ 657.474062] ? __kasan_slab_alloc+0x4e/0x90
[ 657.474707] sk_psock_skb_ingress_enqueue+0x3bf/0x510
[ 657.475392] ? __kasan_kmalloc+0xaa/0xb0
[ 657.476010] sk_psock_backlog+0x5cf/0xd70
[ 657.476637] process_one_work+0x858/0x1a20
'''
The panic originates from the assertion BUG_ON(skb_shared(skb)) in
skb_linearize(). A previous commit(see Fixes tag) introduced skb_get()
to avoid race conditions between skb operations in the backlog and skb
release in the recvmsg path. However, this caused the panic to always
occur when skb_linearize is executed.
The "--rx-strp 100000" parameter forces the RX path to use the strparser
module which aggregates data until it reaches 100KB before calling sockmap
logic. The 100KB payload exceeds MAX_MSG_FRAGS, triggering skb_linearize.
To fix this issue, just move skb_get into sk_psock_skb_ingress_enqueue.
'''
sk_psock_backlog:
sk_psock_handle_skb
skb_get(skb) <== we move it into 'sk_psock_skb_ingress_enqueue'
sk_psock_skb_ingress____________
↓
|
| → sk_psock_skb_ingress_self
| sk_psock_skb_ingress_enqueue
sk_psock_verdict_apply_________________↑ skb_linearize
'''
Note that for verdict_apply path, the skb_get operation is unnecessary so
we add 'take_ref' param to control it's behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: rpi: Add NULL check in raspberrypi_clk_register()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
raspberrypi_clk_register() does not check for this case, which results
in a NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |