| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Secure Boot Security Feature Bypass Vulnerability |
| A stack overflow vulnerability exists in the libexpat library due to the way it handles recursive entity expansion in XML documents. When parsing an XML document with deeply nested entity references, libexpat can be forced to recurse indefinitely, exhausting the stack space and causing a crash. This issue could lead to denial of service (DoS) or, in some cases, exploitable memory corruption, depending on the environment and library usage. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: free copynotify stateid in nfs4_free_ol_stateid()
Typically copynotify stateid is freed either when parent's stateid
is being close/freed or in nfsd4_laundromat if the stateid hasn't
been used in a lease period.
However, in case when the server got an OPEN (which created
a parent stateid), followed by a COPY_NOTIFY using that stateid,
followed by a client reboot. New client instance while doing
CREATE_SESSION would force expire previous state of this client.
It leads to the open state being freed thru release_openowner->
nfs4_free_ol_stateid() and it finds that it still has copynotify
stateid associated with it. We currently print a warning and is
triggerred
WARNING: CPU: 1 PID: 8858 at fs/nfsd/nfs4state.c:1550 nfs4_free_ol_stateid+0xb0/0x100 [nfsd]
This patch, instead, frees the associated copynotify stateid here.
If the parent stateid is freed (without freeing the copynotify
stateids associated with it), it leads to the list corruption
when laundromat ends up freeing the copynotify state later.
[ 1626.839430] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 1626.842828] Modules linked in: nfnetlink_queue nfnetlink_log bluetooth cfg80211 rpcrdma rdma_cm iw_cm ib_cm ib_core nfsd nfs_acl lockd grace nfs_localio ext4 crc16 mbcache jbd2 overlay uinput snd_seq_dummy snd_hrtimer qrtr rfkill vfat fat uvcvideo snd_hda_codec_generic videobuf2_vmalloc videobuf2_memops snd_hda_intel uvc snd_intel_dspcfg videobuf2_v4l2 videobuf2_common snd_hda_codec snd_hda_core videodev snd_hwdep snd_seq mc snd_seq_device snd_pcm snd_timer snd soundcore sg loop auth_rpcgss vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vmw_vmci vsock xfs 8021q garp stp llc mrp nvme ghash_ce e1000e nvme_core sr_mod nvme_keyring nvme_auth cdrom vmwgfx drm_ttm_helper ttm sunrpc dm_mirror dm_region_hash dm_log iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse dm_multipath dm_mod nfnetlink
[ 1626.855594] CPU: 2 UID: 0 PID: 199 Comm: kworker/u24:33 Kdump: loaded Tainted: G B W 6.17.0-rc7+ #22 PREEMPT(voluntary)
[ 1626.857075] Tainted: [B]=BAD_PAGE, [W]=WARN
[ 1626.857573] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.24006586.BA64.2406042154 06/04/2024
[ 1626.858724] Workqueue: nfsd4 laundromat_main [nfsd]
[ 1626.859304] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 1626.860010] pc : __list_del_entry_valid_or_report+0x148/0x200
[ 1626.860601] lr : __list_del_entry_valid_or_report+0x148/0x200
[ 1626.861182] sp : ffff8000881d7a40
[ 1626.861521] x29: ffff8000881d7a40 x28: 0000000000000018 x27: ffff0000c2a98200
[ 1626.862260] x26: 0000000000000600 x25: 0000000000000000 x24: ffff8000881d7b20
[ 1626.862986] x23: ffff0000c2a981e8 x22: 1fffe00012410e7d x21: ffff0000920873e8
[ 1626.863701] x20: ffff0000920873e8 x19: ffff000086f22998 x18: 0000000000000000
[ 1626.864421] x17: 20747562202c3839 x16: 3932326636383030 x15: 3030666666662065
[ 1626.865092] x14: 6220646c756f6873 x13: 0000000000000001 x12: ffff60004fd9e4a3
[ 1626.865713] x11: 1fffe0004fd9e4a2 x10: ffff60004fd9e4a2 x9 : dfff800000000000
[ 1626.866320] x8 : 00009fffb0261b5e x7 : ffff00027ecf2513 x6 : 0000000000000001
[ 1626.866938] x5 : ffff00027ecf2510 x4 : ffff60004fd9e4a3 x3 : 0000000000000000
[ 1626.867553] x2 : 0000000000000000 x1 : ffff000096069640 x0 : 000000000000006d
[ 1626.868167] Call trace:
[ 1626.868382] __list_del_entry_valid_or_report+0x148/0x200 (P)
[ 1626.868876] _free_cpntf_state_locked+0xd0/0x268 [nfsd]
[ 1626.869368] nfs4_laundromat+0x6f8/0x1058 [nfsd]
[ 1626.869813] laundromat_main+0x24/0x60 [nfsd]
[ 1626.870231] process_one_work+0x584/0x1050
[ 1626.870595] worker_thread+0x4c4/0xc60
[ 1626.870893] kthread+0x2f8/0x398
[ 1626.871146] ret_from_fork+0x10/0x20
[ 1626.871422] Code: aa1303e1 aa1403e3 910e8000 97bc55d7 (d4210000)
[ 1626.871892] SMP: stopping secondary CPUs |
| Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. An Uncontrolled Recursion vulnerability in node-forge versions 1.3.1 and below enables remote, unauthenticated attackers to craft deep ASN.1 structures that trigger unbounded recursive parsing. This leads to a Denial-of-Service (DoS) via stack exhaustion when parsing untrusted DER inputs. This issue has been patched in version 1.3.2. |
| KaTeX is a JavaScript library for TeX math rendering on the web. KaTeX users who render untrusted mathematical expressions could encounter malicious input using `\edef` that causes a near-infinite loop, despite setting `maxExpand` to avoid such loops. This can be used as an availability attack, where e.g. a client rendering another user's KaTeX input will be unable to use the site due to memory overflow, tying up the main thread, or stack overflow. Upgrade to KaTeX v0.16.10 to remove this vulnerability. |
| The snmp_pdu_parse function in snmp_api.c in net-snmp 5.7.2 and earlier does not remove the varBind variable in a netsnmp_variable_list item when parsing of the SNMP PDU fails, which allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted packet. |
| Mio is a Metal I/O library for Rust. When using named pipes on Windows, mio will under some circumstances return invalid tokens that correspond to named pipes that have already been deregistered from the mio registry. The impact of this vulnerability depends on how mio is used. For some applications, invalid tokens may be ignored or cause a warning or a crash. On the other hand, for applications that store pointers in the tokens, this vulnerability may result in a use-after-free. For users of Tokio, this vulnerability is serious and can result in a use-after-free in Tokio. The vulnerability is Windows-specific, and can only happen if you are using named pipes. Other IO resources are not affected. This vulnerability has been fixed in mio v0.8.11. All versions of mio between v0.7.2 and v0.8.10 are vulnerable. Tokio is vulnerable when you are using a vulnerable version of mio AND you are using at least Tokio v1.30.0. Versions of Tokio prior to v1.30.0 will ignore invalid tokens, so they are not vulnerable. Vulnerable libraries that use mio can work around this issue by detecting and ignoring invalid tokens. |
| Jansson 2.7 and earlier allows context-dependent attackers to cause a denial of service (deep recursion, stack consumption, and crash) via crafted JSON data. |
| The xmlStringGetNodeList function in tree.c in libxml2 2.9.3 and earlier, when used in recovery mode, allows context-dependent attackers to cause a denial of service (infinite recursion, stack consumption, and application crash) via a crafted XML document. |
| The SMB parser in tcpdump before 4.9.3 has stack exhaustion in smbutil.c:smb_fdata() via recursion. |
| The BGP parser in tcpdump before 4.9.3 allows stack consumption in print-bgp.c:bgp_attr_print() because of unlimited recursion. |
| MIT Kerberos 5 (aka krb5) before 1.17.2 and 1.18.x before 1.18.3 allows unbounded recursion via an ASN.1-encoded Kerberos message because the lib/krb5/asn.1/asn1_encode.c support for BER indefinite lengths lacks a recursion limit. |
| Werkzeug is a comprehensive WSGI web application library. Prior to version 3.1.4, Werkzeug's safe_join function allows path segments with Windows device names. On Windows, there are special device names such as CON, AUX, etc that are implicitly present and readable in every directory. send_from_directory uses safe_join to safely serve files at user-specified paths under a directory. If the application is running on Windows, and the requested path ends with a special device name, the file will be opened successfully, but reading will hang indefinitely. This issue has been patched in version 3.1.4. |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause incorrect control flow behavior. A successful exploit of this vulnerability might lead to data tampering. |
| Uncontrolled recursion in the json2pb component in Apache bRPC (version < 1.15.0) on all platforms allows remote attackers to make the server crash via sending deep recursive json data.
Root Cause:
The bRPC json2pb component uses rapidjson to parse json data from the network. The rapidjson parser uses a recursive parsing method by default. If the input json has a large depth of recursive structure, the parser function may run into stack overflow.
Affected Scenarios:
Use bRPC server with protobuf message to serve http+json requests from untrusted network. Or directly use JsonToProtoMessage to convert json from untrusted input.
How to Fix:
(Choose one of the following options)
1. Upgrade bRPC to version 1.15.0, which fixes this issue.
2. Apply this patch: https://github.com/apache/brpc/pull/3099
Note:
No matter which option
you choose, you should know that the fix introduces a recursion depth limit with default value 100. It affects these functions:
ProtoMessageToJson, ProtoMessageToProtoJson, JsonToProtoMessage, and ProtoJsonToProtoMessage.
If your requests contain json or protobuf messages that have a depth exceeding the limit, the request will be failed after applying the fix. You can modify the gflag json2pb_max_recursion_depth to change the limit. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/futex: ensure io_futex_wait() cleans up properly on failure
The io_futex_data is allocated upfront and assigned to the io_kiocb
async_data field, but the request isn't marked with REQ_F_ASYNC_DATA
at that point. Those two should always go together, as the flag tells
io_uring whether the field is valid or not.
Additionally, on failure cleanup, the futex handler frees the data but
does not clear ->async_data. Clear the data and the flag in the error
path as well.
Thanks to Trend Micro Zero Day Initiative and particularly ReDress for
reporting this. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix stack protector issue in send_ipi_data()
Function kvm_io_bus_read() is called in function send_ipi_data(), buffer
size of parameter *val should be at least 8 bytes. Since some emulation
functions like loongarch_ipi_readl() and kvm_eiointc_read() will write
the buffer *val with 8 bytes signed extension regardless parameter len.
Otherwise there will be buffer overflow issue when CONFIG_STACKPROTECTOR
is enabled. The bug report is shown as follows:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: send_ipi_data+0x194/0x1a0 [kvm]
CPU: 11 UID: 107 PID: 2692 Comm: CPU 0/KVM Not tainted 6.17.0-rc1+ #102 PREEMPT(full)
Stack : 9000000005901568 0000000000000000 9000000003af371c 900000013c68c000
900000013c68f850 900000013c68f858 0000000000000000 900000013c68f998
900000013c68f990 900000013c68f990 900000013c68f6c0 fffffffffffdb058
fffffffffffdb0e0 900000013c68f858 911e1d4d39cf0ec2 9000000105657a00
0000000000000001 fffffffffffffffe 0000000000000578 282049464555206e
6f73676e6f6f4c20 0000000000000001 00000000086b4000 0000000000000000
0000000000000000 0000000000000000 9000000005709968 90000000058f9000
900000013c68fa68 900000013c68fab4 90000000029279f0 900000010153f940
900000010001f360 0000000000000000 9000000003af3734 000000004390000c
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003af3734>] show_stack+0x5c/0x180
[<9000000003aed168>] dump_stack_lvl+0x6c/0x9c
[<9000000003ad0ab0>] vpanic+0x108/0x2c4
[<9000000003ad0ca8>] panic+0x3c/0x40
[<9000000004eb0a1c>] __stack_chk_fail+0x14/0x18
[<ffff8000023473f8>] send_ipi_data+0x190/0x1a0 [kvm]
[<ffff8000023313e4>] __kvm_io_bus_write+0xa4/0xe8 [kvm]
[<ffff80000233147c>] kvm_io_bus_write+0x54/0x90 [kvm]
[<ffff80000233f9f8>] kvm_emu_iocsr+0x180/0x310 [kvm]
[<ffff80000233fe08>] kvm_handle_gspr+0x280/0x478 [kvm]
[<ffff8000023443e8>] kvm_handle_exit+0xc0/0x130 [kvm] |
| The ConvolveHorizontally function in Skia, as used in Mozilla Firefox before 31.0, Firefox ESR 24.x before 24.7, and Thunderbird before 24.7, does not properly handle the discarding of image data during function execution, which allows remote attackers to execute arbitrary code by triggering prolonged image scaling, as demonstrated by scaling of a high-quality image. |
| IBM Concert 1.0.0 through 2.0.0 could allow a local user with specific permission to obtain sensitive information from files due to uncontrolled recursive directory copying. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Prevent sending WMI commands to firmware during firmware crash
Currently, we encounter the following kernel call trace when a firmware
crash occurs. This happens because the host sends WMI commands to the
firmware while it is in recovery, causing the commands to fail and
resulting in the kernel call trace.
Set the ATH12K_FLAG_CRASH_FLUSH and ATH12K_FLAG_RECOVERY flags when the
host driver receives the firmware crash notification from MHI. This
prevents sending WMI commands to the firmware during recovery.
Call Trace:
<TASK>
dump_stack_lvl+0x75/0xc0
register_lock_class+0x6be/0x7a0
? __lock_acquire+0x644/0x19a0
__lock_acquire+0x95/0x19a0
lock_acquire+0x265/0x310
? ath12k_ce_send+0xa2/0x210 [ath12k]
? find_held_lock+0x34/0xa0
? ath12k_ce_send+0x56/0x210 [ath12k]
_raw_spin_lock_bh+0x33/0x70
? ath12k_ce_send+0xa2/0x210 [ath12k]
ath12k_ce_send+0xa2/0x210 [ath12k]
ath12k_htc_send+0x178/0x390 [ath12k]
ath12k_wmi_cmd_send_nowait+0x76/0xa0 [ath12k]
ath12k_wmi_cmd_send+0x62/0x190 [ath12k]
ath12k_wmi_pdev_bss_chan_info_request+0x62/0xc0 [ath1
ath12k_mac_op_get_survey+0x2be/0x310 [ath12k]
ieee80211_dump_survey+0x99/0x240 [mac80211]
nl80211_dump_survey+0xe7/0x470 [cfg80211]
? kmalloc_reserve+0x59/0xf0
genl_dumpit+0x24/0x70
netlink_dump+0x177/0x360
__netlink_dump_start+0x206/0x280
genl_family_rcv_msg_dumpit.isra.22+0x8a/0xe0
? genl_family_rcv_msg_attrs_parse.isra.23+0xe0/0xe0
? genl_op_lock.part.12+0x10/0x10
? genl_dumpit+0x70/0x70
genl_rcv_msg+0x1d0/0x290
? nl80211_del_station+0x330/0x330 [cfg80211]
? genl_get_cmd_both+0x50/0x50
netlink_rcv_skb+0x4f/0x100
genl_rcv+0x1f/0x30
netlink_unicast+0x1b6/0x260
netlink_sendmsg+0x31a/0x450
__sock_sendmsg+0xa8/0xb0
____sys_sendmsg+0x1e4/0x260
___sys_sendmsg+0x89/0xe0
? local_clock_noinstr+0xb/0xc0
? rcu_is_watching+0xd/0x40
? kfree+0x1de/0x370
? __sys_sendmsg+0x7a/0xc0
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |