| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/entry_32: Clear CPU buffers after register restore in NMI return
CPU buffers are currently cleared after call to exc_nmi, but before
register state is restored. This may be okay for MDS mitigation but not for
RDFS. Because RDFS mitigation requires CPU buffers to be cleared when
registers don't have any sensitive data.
Move CLEAR_CPU_BUFFERS after RESTORE_ALL_NMI. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: ISO: Fix multiple init when debugfs is disabled
If bt_debugfs is not created successfully, which happens if either
CONFIG_DEBUG_FS or CONFIG_DEBUG_FS_ALLOW_ALL is unset, then iso_init()
returns early and does not set iso_inited to true. This means that a
subsequent call to iso_init() will result in duplicate calls to
proto_register(), bt_sock_register(), etc.
With CONFIG_LIST_HARDENED and CONFIG_BUG_ON_DATA_CORRUPTION enabled, the
duplicate call to proto_register() triggers this BUG():
list_add double add: new=ffffffffc0b280d0, prev=ffffffffbab56250,
next=ffffffffc0b280d0.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:35!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 2 PID: 887 Comm: bluetoothd Not tainted 6.10.11-1-ao-desktop #1
RIP: 0010:__list_add_valid_or_report+0x9a/0xa0
...
__list_add_valid_or_report+0x9a/0xa0
proto_register+0x2b5/0x340
iso_init+0x23/0x150 [bluetooth]
set_iso_socket_func+0x68/0x1b0 [bluetooth]
kmem_cache_free+0x308/0x330
hci_sock_sendmsg+0x990/0x9e0 [bluetooth]
__sock_sendmsg+0x7b/0x80
sock_write_iter+0x9a/0x110
do_iter_readv_writev+0x11d/0x220
vfs_writev+0x180/0x3e0
do_writev+0xca/0x100
...
This change removes the early return. The check for iso_debugfs being
NULL was unnecessary, it is always NULL when iso_inited is false. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mana: Fix error handling in mana_create_txq/rxq's NAPI cleanup
Currently napi_disable() gets called during rxq and txq cleanup,
even before napi is enabled and hrtimer is initialized. It causes
kernel panic.
? page_fault_oops+0x136/0x2b0
? page_counter_cancel+0x2e/0x80
? do_user_addr_fault+0x2f2/0x640
? refill_obj_stock+0xc4/0x110
? exc_page_fault+0x71/0x160
? asm_exc_page_fault+0x27/0x30
? __mmdrop+0x10/0x180
? __mmdrop+0xec/0x180
? hrtimer_active+0xd/0x50
hrtimer_try_to_cancel+0x2c/0xf0
hrtimer_cancel+0x15/0x30
napi_disable+0x65/0x90
mana_destroy_rxq+0x4c/0x2f0
mana_create_rxq.isra.0+0x56c/0x6d0
? mana_uncfg_vport+0x50/0x50
mana_alloc_queues+0x21b/0x320
? skb_dequeue+0x5f/0x80 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: cmd-db: Map shared memory as WC, not WB
Linux does not write into cmd-db region. This region of memory is write
protected by XPU. XPU may sometime falsely detect clean cache eviction
as "write" into the write protected region leading to secure interrupt
which causes an endless loop somewhere in Trust Zone.
The only reason it is working right now is because Qualcomm Hypervisor
maps the same region as Non-Cacheable memory in Stage 2 translation
tables. The issue manifests if we want to use another hypervisor (like
Xen or KVM), which does not know anything about those specific mappings.
Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC
removes dependency on correct mappings in Stage 2 tables. This patch
fixes the issue by updating the mapping to MEMREMAP_WC.
I tested this on SA8155P with Xen. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: flowtable: initialise extack before use
Fix missing initialisation of extack in flow offload. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/smt: Fix unbalance sched_smt_present dec/inc
I got the following warn report while doing stress test:
jump label: negative count!
WARNING: CPU: 3 PID: 38 at kernel/jump_label.c:263 static_key_slow_try_dec+0x9d/0xb0
Call Trace:
<TASK>
__static_key_slow_dec_cpuslocked+0x16/0x70
sched_cpu_deactivate+0x26e/0x2a0
cpuhp_invoke_callback+0x3ad/0x10d0
cpuhp_thread_fun+0x3f5/0x680
smpboot_thread_fn+0x56d/0x8d0
kthread+0x309/0x400
ret_from_fork+0x41/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
Because when cpuset_cpu_inactive() fails in sched_cpu_deactivate(),
the cpu offline failed, but sched_smt_present is decremented before
calling sched_cpu_deactivate(), it leads to unbalanced dec/inc, so
fix it by incrementing sched_smt_present in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: Initialize beyond-EOF page contents before setting uptodate
fuse_notify_store(), unlike fuse_do_readpage(), does not enable page
zeroing (because it can be used to change partial page contents).
So fuse_notify_store() must be more careful to fully initialize page
contents (including parts of the page that are beyond end-of-file)
before marking the page uptodate.
The current code can leave beyond-EOF page contents uninitialized, which
makes these uninitialized page contents visible to userspace via mmap().
This is an information leak, but only affects systems which do not
enable init-on-alloc (via CONFIG_INIT_ON_ALLOC_DEFAULT_ON=y or the
corresponding kernel command line parameter). |
| In the Linux kernel, the following vulnerability has been resolved:
soc: xilinx: rename cpu_number1 to dummy_cpu_number
The per cpu variable cpu_number1 is passed to xlnx_event_handler as
argument "dev_id", but it is not used in this function. So drop the
initialization of this variable and rename it to dummy_cpu_number.
This patch is to fix the following call trace when the kernel option
CONFIG_DEBUG_ATOMIC_SLEEP is enabled:
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:274
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.0 #53
Hardware name: Xilinx Versal vmk180 Eval board rev1.1 (QSPI) (DT)
Call trace:
dump_backtrace+0xd0/0xe0
show_stack+0x18/0x40
dump_stack_lvl+0x7c/0xa0
dump_stack+0x18/0x34
__might_resched+0x10c/0x140
__might_sleep+0x4c/0xa0
__kmem_cache_alloc_node+0xf4/0x168
kmalloc_trace+0x28/0x38
__request_percpu_irq+0x74/0x138
xlnx_event_manager_probe+0xf8/0x298
platform_probe+0x68/0xd8 |
| Improper initialization in firmware for some Intel(R) CSME may allow a privileged user to potentially enable information disclosure via local access. |
| Improper initialization in UEFI firmware OutOfBandXML module in some Intel(R) Processors may allow a privileged user to potentially enable information disclosure via local access. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.
When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit. This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.
For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.
But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.
Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop. If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.
The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup. E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).
L1's view:
==========
<L1 disables DR interception>
CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0
A: L1 Writes DR6
CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1
B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec
D: L1 reads DR6, arch.dr6 = 0
CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0
CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0
L2 reads DR6, L1 disables DR interception
CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0
CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0
L2 detects failure
CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT
L1 reads DR6 (confirms failure)
CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0
L0's view:
==========
L2 reads DR6, arch.dr6 = 0
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
L2 => L1 nested VM-Exit
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.
---truncated--- |
| A flaw was found in the opj2_decompress program in openjpeg2 2.4.0 in the way it handles an input directory with a large number of files. When it fails to allocate a buffer to store the filenames of the input directory, it calls free() on an uninitialized pointer, leading to a segmentation fault and a denial of service. |
| Uninitialized memory in the JavaScript Engine component. This vulnerability affects Firefox < 142, Firefox ESR < 128.14, Firefox ESR < 140.2, Thunderbird < 142, Thunderbird < 128.14, and Thunderbird < 140.2. |
| Improper initialization of CPU cache memory could allow a privileged attacker with hypervisor access to overwrite SEV-SNP guest memory resulting in loss of data integrity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Grab intel_display from the encoder to avoid potential oopsies
Grab the intel_display from 'encoder' rather than 'state'
in the encoder hooks to avoid the massive footgun that is
intel_sanitize_encoder(), which passes NULL as the 'state'
argument to encoder .disable() and .post_disable().
TODO: figure out how to actually fix intel_sanitize_encoder()... |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: clean up ROC on failure
If the firmware fails to start the session protection, then we
do call iwl_mvm_roc_finished() here, but that won't do anything
at all because IWL_MVM_STATUS_ROC_P2P_RUNNING was never set.
Set IWL_MVM_STATUS_ROC_P2P_RUNNING in the failure/stop path.
If it started successfully before, it's already set, so that
doesn't matter, and if it didn't start it needs to be set to
clean up.
Not doing so will lead to a WARN_ON() later on a fresh remain-
on-channel, since the link is already active when activated as
it was never deactivated. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix legacy client tracking initialization
Get rid of the nfsd4_legacy_tracking_ops->init() call in
check_for_legacy_methods(). That will be handled in the caller
(nfsd4_client_tracking_init()). Otherwise, we'll wind up calling
nfsd4_legacy_tracking_ops->init() twice, and the second time we'll
trigger the BUG_ON() in nfsd4_init_recdir(). |
| A memory initialization issue was addressed. This issue is fixed in macOS Big Sur 11.0.1, watchOS 7.1, iOS 12.4.9, watchOS 6.2.9, Security Update 2020-006 High Sierra, Security Update 2020-006 Mojave, iOS 14.2 and iPadOS 14.2, watchOS 5.3.9, macOS Catalina 10.15.7 Supplemental Update, macOS Catalina 10.15.7 Update. A malicious application may be able to disclose kernel memory. |
| The strncmp implementation optimized for the Power10 processor in the GNU C Library version 2.40 and later writes to vector registers v20 to v31 without saving contents from the caller (those registers are defined as non-volatile registers by the powerpc64le ABI), resulting in overwriting of its contents and potentially altering control flow of the caller, or leaking the input strings to the function to other parts of the program. |
| Mozilla Firefox before 21.0, Firefox ESR 17.x before 17.0.6, Thunderbird before 17.0.6, and Thunderbird ESR 17.x before 17.0.6 do not properly initialize data structures for the nsDOMSVGZoomEvent::mPreviousScale and nsDOMSVGZoomEvent::mNewScale functions, which allows remote attackers to obtain sensitive information from process memory via a crafted web site. |