| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ima: Handle error code returned by ima_filter_rule_match()
In ima_match_rules(), if ima_filter_rule_match() returns -ENOENT due to
the rule being NULL, the function incorrectly skips the 'if (!rc)' check
and sets 'result = true'. The LSM rule is considered a match, causing
extra files to be measured by IMA.
This issue can be reproduced in the following scenario:
After unloading the SELinux policy module via 'semodule -d', if an IMA
measurement is triggered before ima_lsm_rules is updated,
in ima_match_rules(), the first call to ima_filter_rule_match() returns
-ESTALE. This causes the code to enter the 'if (rc == -ESTALE &&
!rule_reinitialized)' block, perform ima_lsm_copy_rule() and retry. In
ima_lsm_copy_rule(), since the SELinux module has been removed, the rule
becomes NULL, and the second call to ima_filter_rule_match() returns
-ENOENT. This bypasses the 'if (!rc)' check and results in a false match.
Call trace:
selinux_audit_rule_match+0x310/0x3b8
security_audit_rule_match+0x60/0xa0
ima_match_rules+0x2e4/0x4a0
ima_match_policy+0x9c/0x1e8
ima_get_action+0x48/0x60
process_measurement+0xf8/0xa98
ima_bprm_check+0x98/0xd8
security_bprm_check+0x5c/0x78
search_binary_handler+0x6c/0x318
exec_binprm+0x58/0x1b8
bprm_execve+0xb8/0x130
do_execveat_common.isra.0+0x1a8/0x258
__arm64_sys_execve+0x48/0x68
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x44/0x200
el0t_64_sync_handler+0x100/0x130
el0t_64_sync+0x3c8/0x3d0
Fix this by changing 'if (!rc)' to 'if (rc <= 0)' to ensure that error
codes like -ENOENT do not bypass the check and accidentally result in a
successful match. |
| In the Linux kernel, the following vulnerability has been resolved:
smack: fix bug: unprivileged task can create labels
If an unprivileged task is allowed to relabel itself
(/smack/relabel-self is not empty),
it can freely create new labels by writing their
names into own /proc/PID/attr/smack/current
This occurs because do_setattr() imports
the provided label in advance,
before checking "relabel-self" list.
This change ensures that the "relabel-self" list
is checked before importing the label. |
| In the Linux kernel, the following vulnerability has been resolved:
gpu: host1x: Fix race in syncpt alloc/free
Fix race condition between host1x_syncpt_alloc()
and host1x_syncpt_put() by using kref_put_mutex()
instead of kref_put() + manual mutex locking.
This ensures no thread can acquire the
syncpt_mutex after the refcount drops to zero
but before syncpt_release acquires it.
This prevents races where syncpoints could
be allocated while still being cleaned up
from a previous release.
Remove explicit mutex locking in syncpt_release
as kref_put_mutex() handles this atomically. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: fix uninit memory after failed mi_read in mi_format_new
Fix a KMSAN un-init bug found by syzkaller.
ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be
uptodate. We do not bring the buffer uptodate before setting it as
uptodate. If the buffer were to not be uptodate, it could mean adding a
buffer with un-init data to the mi record. Attempting to load that record
will trigger KMSAN.
Avoid this by setting the buffer as uptodate, if it’s not already, by
overwriting it. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: Fix uninit buffer allocated by __getname()
Fix uninit errors caused after buffer allocation given to 'de'; by
initializing the buffer with zeroes. The fix was found by using KMSAN. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: asymmetric_keys - prevent overflow in asymmetric_key_generate_id
Use check_add_overflow() to guard against potential integer overflows
when adding the binary blob lengths and the size of an asymmetric_key_id
structure and return ERR_PTR(-EOVERFLOW) accordingly. This prevents a
possible buffer overflow when copying data from potentially malicious
X.509 certificate fields that can be arbitrarily large, such as ASN.1
INTEGER serial numbers, issuer names, etc. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix peer HE MCS assignment
In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to
firmware as receive MCS while peer's receive MCS sent as transmit MCS,
which goes against firmwire's definition.
While connecting to a misbehaved AP that advertises 0xffff (meaning not
supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff
is assigned to he_mcs->rx_mcs_set field.
Ext Tag: HE Capabilities
[...]
Supported HE-MCS and NSS Set
[...]
Rx and Tx MCS Maps 160 MHz
[...]
Tx HE-MCS Map 160 MHz: 0xffff
Swap the assignment to fix this issue.
As the HE rate control mask is meant to limit our own transmit MCS, it
needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping
done, change is needed as well to apply it to the peer's receive MCS.
Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix null deref on srq->rq.queue after resize failure
A NULL pointer dereference can occur in rxe_srq_chk_attr() when
ibv_modify_srq() is invoked twice in succession under certain error
conditions. The first call may fail in rxe_queue_resize(), which leads
rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then
triggers a crash (null deref) when accessing
srq->rq.queue->buf->index_mask.
Call Trace:
<TASK>
rxe_modify_srq+0x170/0x480 [rdma_rxe]
? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe]
? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs]
? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs]
ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs]
? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs]
? tryinc_node_nr_active+0xe6/0x150
? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs]
ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs]
? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs]
? __pfx___raw_spin_lock_irqsave+0x10/0x10
? __pfx_do_vfs_ioctl+0x10/0x10
? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0
? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10
ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs]
? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs]
__x64_sys_ioctl+0x138/0x1c0
do_syscall_64+0x82/0x250
? fdget_pos+0x58/0x4c0
? ksys_write+0xf3/0x1c0
? __pfx_ksys_write+0x10/0x10
? do_syscall_64+0xc8/0x250
? __pfx_vm_mmap_pgoff+0x10/0x10
? fget+0x173/0x230
? fput+0x2a/0x80
? ksys_mmap_pgoff+0x224/0x4c0
? do_syscall_64+0xc8/0x250
? do_user_addr_fault+0x37b/0xfe0
? clear_bhb_loop+0x50/0xa0
? clear_bhb_loop+0x50/0xa0
? clear_bhb_loop+0x50/0xa0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: defer config put in recv_work
There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and
NBD_CMD_RECONFIGURE:
nbd_genl_connect // conf_ref=2 (connect and recv_work A)
nbd_open // conf_ref=3
recv_work A done // conf_ref=2
NBD_CLEAR_SOCK // conf_ref=1
nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B)
close nbd // conf_ref=1
recv_work B
config_put // conf_ref=0
atomic_dec(&config->recv_threads); -> UAF
Or only running NBD_CLEAR_SOCK:
nbd_genl_connect // conf_ref=2
nbd_open // conf_ref=3
NBD_CLEAR_SOCK // conf_ref=2
close nbd
nbd_release
config_put // conf_ref=1
recv_work
config_put // conf_ref=0
atomic_dec(&config->recv_threads); -> UAF
Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the
waiter") moved nbd_config_put() to run before waking up the waiter in
recv_work, in order to ensure that nbd_start_device_ioctl() would not
be woken up while nbd->task_recv was still uncleared.
However, in nbd_start_device_ioctl(), after being woken up it explicitly
calls flush_workqueue() to make sure all current works are finished.
Therefore, there is no need to move the config put ahead of the wakeup.
Move nbd_config_put() to the end of recv_work, so that the reference is
held for the whole lifetime of the worker thread. This makes sure the
config cannot be freed while recv_work is still running, even if clear
+ reconfigure interleave.
In addition, we don't need to worry about recv_work dropping the last
nbd_put (which causes deadlock):
path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT):
connect // nbd_refs=1 (trigger recv_work)
open nbd // nbd_refs=2
NBD_CLEAR_SOCK
close nbd
nbd_release
nbd_disconnect_and_put
flush_workqueue // recv_work done
nbd_config_put
nbd_put // nbd_refs=1
nbd_put // nbd_refs=0
queue_work
path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT):
connect // nbd_refs=2 (trigger recv_work)
open nbd // nbd_refs=3
NBD_CLEAR_SOCK // conf_refs=2
close nbd
nbd_release
nbd_config_put // conf_refs=1
nbd_put // nbd_refs=2
recv_work done // conf_refs=0, nbd_refs=1
rmmod // nbd_refs=0
Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put") |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Fix device resources accessed after device removal
Correct possible race conditions during device removal.
Previously, a scheduled work item to reset a LUN could still execute
after the device was removed, leading to use-after-free and other
resource access issues.
This race condition occurs because the abort handler may schedule a LUN
reset concurrently with device removal via sdev_destroy(), leading to
use-after-free and improper access to freed resources.
- Check in the device reset handler if the device is still present in
the controller's SCSI device list before running; if not, the reset
is skipped.
- Cancel any pending TMF work that has not started in sdev_destroy().
- Ensure device freeing in sdev_destroy() is done while holding the
LUN reset mutex to avoid races with ongoing resets. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: init run lock for extend inode
After setting the inode mode of $Extend to a regular file, executing the
truncate system call will enter the do_truncate() routine, causing the
run_lock uninitialized error reported by syzbot.
Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to
a regular file, the do_truncate() routine would not be entered.
Add the run_lock initialization when loading $Extend.
syzbot reported:
INFO: trying to register non-static key.
Call Trace:
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984
register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299
__lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112
lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868
down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590
ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860
ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387
ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808 |
| In the Linux kernel, the following vulnerability has been resolved:
macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse
The following warning appears when running syzkaller, and this issue also
exists in the mainline code.
------------[ cut here ]------------
list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100.
WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130
Modules linked in:
CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__list_add_valid_or_report+0xf7/0x130
RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817
RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001
RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c
R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100
R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48
FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 80000000
Call Trace:
<TASK>
input_register_handler+0xb3/0x210
mac_hid_start_emulation+0x1c5/0x290
mac_hid_toggle_emumouse+0x20a/0x240
proc_sys_call_handler+0x4c2/0x6e0
new_sync_write+0x1b1/0x2d0
vfs_write+0x709/0x950
ksys_write+0x12a/0x250
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x78/0xe2
The WARNING occurs when two processes concurrently write to the mac-hid
emulation sysctl, causing a race condition in mac_hid_toggle_emumouse().
Both processes read old_val=0, then both try to register the input handler,
leading to a double list_add of the same handler.
CPU0 CPU1
------------------------- -------------------------
vfs_write() //write 1 vfs_write() //write 1
proc_sys_write() proc_sys_write()
mac_hid_toggle_emumouse() mac_hid_toggle_emumouse()
old_val = *valp // old_val=0
old_val = *valp // old_val=0
mutex_lock_killable()
proc_dointvec() // *valp=1
mac_hid_start_emulation()
input_register_handler()
mutex_unlock()
mutex_lock_killable()
proc_dointvec()
mac_hid_start_emulation()
input_register_handler() //Trigger Warning
mutex_unlock()
Fix this by moving the old_val read inside the mutex lock region. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: defer config unlock in nbd_genl_connect
There is one use-after-free warning when running NBD_CMD_CONNECT and
NBD_CLEAR_SOCK:
nbd_genl_connect
nbd_alloc_and_init_config // config_refs=1
nbd_start_device // config_refs=2
set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3
recv_work done // config_refs=2
NBD_CLEAR_SOCK // config_refs=1
close nbd // config_refs=0
refcount_inc -> uaf
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290
nbd_genl_connect+0x16d0/0x1ab0
genl_family_rcv_msg_doit+0x1f3/0x310
genl_rcv_msg+0x44a/0x790
The issue can be easily reproduced by adding a small delay before
refcount_inc(&nbd->config_refs) in nbd_genl_connect():
mutex_unlock(&nbd->config_lock);
if (!ret) {
set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags);
+ printk("before sleep\n");
+ mdelay(5 * 1000);
+ printk("after sleep\n");
refcount_inc(&nbd->config_refs);
nbd_connect_reply(info, nbd->index);
} |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: relax BUG() to ocfs2_error() in __ocfs2_move_extent()
In '__ocfs2_move_extent()', relax 'BUG()' to 'ocfs2_error()' just
to avoid crashing the whole kernel due to a filesystem corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check skb->transport_header is set in bpf_skb_check_mtu
The bpf_skb_check_mtu helper needs to use skb->transport_header when
the BPF_MTU_CHK_SEGS flag is used:
bpf_skb_check_mtu(skb, ifindex, &mtu_len, 0, BPF_MTU_CHK_SEGS)
The transport_header is not always set. There is a WARN_ON_ONCE
report when CONFIG_DEBUG_NET is enabled + skb->gso_size is set +
bpf_prog_test_run is used:
WARNING: CPU: 1 PID: 2216 at ./include/linux/skbuff.h:3071
skb_gso_validate_network_len
bpf_skb_check_mtu
bpf_prog_3920e25740a41171_tc_chk_segs_flag # A test in the next patch
bpf_test_run
bpf_prog_test_run_skb
For a normal ingress skb (not test_run), skb_reset_transport_header
is performed but there is plan to avoid setting it as described in
commit 2170a1f09148 ("net: no longer reset transport_header in __netif_receive_skb_core()").
This patch fixes the bpf helper by checking
skb_transport_header_was_set(). The check is done just before
skb->transport_header is used, to avoid breaking the existing bpf prog.
The WARN_ON_ONCE is limited to bpf_prog_test_run, so targeting bpf-next. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl818x: rtl8187: Fix potential buffer underflow in rtl8187_rx_cb()
The rtl8187_rx_cb() calculates the rx descriptor header address
by subtracting its size from the skb tail pointer.
However, it does not validate if the received packet
(skb->len from urb->actual_length) is large enough to contain this
header.
If a truncated packet is received, this will lead to a buffer
underflow, reading memory before the start of the skb data area,
and causing a kernel panic.
Add length checks for both rtl8187 and rtl8187b descriptor headers
before attempting to access them, dropping the packet cleanly if the
check fails. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: core: Protect regulator_supply_alias_list with regulator_list_mutex
regulator_supply_alias_list was accessed without any locking in
regulator_supply_alias(), regulator_register_supply_alias(), and
regulator_unregister_supply_alias(). Concurrent registration,
unregistration and lookups can race, leading to:
1 use-after-free if an alias entry is removed while being read,
2 duplicate entries when two threads register the same alias,
3 inconsistent alias mappings observed by consumers.
Protect all traversals, insertions and deletions on
regulator_supply_alias_list with the existing regulator_list_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Clear NFS_INO_LAYOUTCOMMIT in pnfs_mark_layout_stateid_invalid
Fixes a crash when layout is null during this call stack:
write_inode
-> nfs4_write_inode
-> pnfs_layoutcommit_inode
pnfs_set_layoutcommit relies on the lseg refcount to keep the layout
around. Need to clear NFS_INO_LAYOUTCOMMIT otherwise we might attempt
to reference a null layout. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-motu: fix buffer overflow in hwdep read for DSP events
The DSP event handling code in hwdep_read() could write more bytes to
the user buffer than requested, when a user provides a buffer smaller
than the event header size (8 bytes).
Fix by using min_t() to clamp the copy size, This ensures we never copy
more than the user requested. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: dice: fix buffer overflow in detect_stream_formats()
The function detect_stream_formats() reads the stream_count value directly
from a FireWire device without validating it. This can lead to
out-of-bounds writes when a malicious device provides a stream_count value
greater than MAX_STREAMS.
Fix by applying the same validation to both TX and RX stream counts in
detect_stream_formats(). |