| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Prevent a bad reference count on CPU nodes
When populating cache leaves we previously fetched the CPU device node
at the very beginning. But when ACPI is enabled we go through a
specific branch which returns early and does not call 'of_node_put' for
the node that was acquired.
Since we are not using a CPU device node for the ACPI code anyways, we
can simply move the initialization of it just passed the ACPI block, and
we are guaranteed to have an 'of_node_put' call for the acquired node.
This prevents a bad reference count of the CPU device node.
Moreover, the previous function did not check for errors when acquiring
the device node, so a return -ENOENT has been added for that case. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix oops on non-dbdc mt7986
mt7915_band_config() sets band_idx = 1 on the main phy for mt7986
with MT7975_ONE_ADIE or MT7976_ONE_ADIE.
Commit 0335c034e726 ("wifi: mt76: fix race condition related to
checking tx queue fill status") introduced a dereference of the
phys array indirectly indexed by band_idx via wcid->phy_idx in
mt76_wcid_cleanup(). This caused the following Oops on affected
mt7986 devices:
Unable to handle kernel read from unreadable memory at virtual address 0000000000000024
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
Data abort info:
ISV = 0, ISS = 0x00000005
CM = 0, WnR = 0
user pgtable: 4k pages, 39-bit VAs, pgdp=0000000042545000
[0000000000000024] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
Internal error: Oops: 0000000096000005 [#1] SMP
Modules linked in: ... mt7915e mt76_connac_lib mt76 mac80211 cfg80211 ...
CPU: 2 PID: 1631 Comm: hostapd Not tainted 5.15.150 #0
Hardware name: ZyXEL EX5700 (Telenor) (DT)
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mt76_wcid_cleanup+0x84/0x22c [mt76]
lr : mt76_wcid_cleanup+0x64/0x22c [mt76]
sp : ffffffc00a803700
x29: ffffffc00a803700 x28: ffffff80008f7300 x27: ffffff80003f3c00
x26: ffffff80000a7880 x25: ffffffc008c26e00 x24: 0000000000000001
x23: ffffffc000a68114 x22: 0000000000000000 x21: ffffff8004172cc8
x20: ffffffc00a803748 x19: ffffff8004152020 x18: 0000000000000000
x17: 00000000000017c0 x16: ffffffc008ef5000 x15: 0000000000000be0
x14: ffffff8004172e28 x13: ffffff8004172e28 x12: 0000000000000000
x11: 0000000000000000 x10: ffffff8004172e30 x9 : ffffff8004172e28
x8 : 0000000000000000 x7 : ffffff8004156020 x6 : 0000000000000000
x5 : 0000000000000031 x4 : 0000000000000000 x3 : 0000000000000001
x2 : 0000000000000000 x1 : ffffff80008f7300 x0 : 0000000000000024
Call trace:
mt76_wcid_cleanup+0x84/0x22c [mt76]
__mt76_sta_remove+0x70/0xbc [mt76]
mt76_sta_state+0x8c/0x1a4 [mt76]
mt7915_eeprom_get_power_delta+0x11e4/0x23a0 [mt7915e]
drv_sta_state+0x144/0x274 [mac80211]
sta_info_move_state+0x1cc/0x2a4 [mac80211]
sta_set_sinfo+0xaf8/0xc24 [mac80211]
sta_info_destroy_addr_bss+0x4c/0x6c [mac80211]
ieee80211_color_change_finish+0x1c08/0x1e70 [mac80211]
cfg80211_check_station_change+0x1360/0x4710 [cfg80211]
genl_family_rcv_msg_doit+0xb4/0x110
genl_rcv_msg+0xd0/0x1bc
netlink_rcv_skb+0x58/0x120
genl_rcv+0x34/0x50
netlink_unicast+0x1f0/0x2ec
netlink_sendmsg+0x198/0x3d0
____sys_sendmsg+0x1b0/0x210
___sys_sendmsg+0x80/0xf0
__sys_sendmsg+0x44/0xa0
__arm64_sys_sendmsg+0x20/0x30
invoke_syscall.constprop.0+0x4c/0xe0
do_el0_svc+0x40/0xd0
el0_svc+0x14/0x4c
el0t_64_sync_handler+0x100/0x110
el0t_64_sync+0x15c/0x160
Code: d2800002 910092c0 52800023 f9800011 (885f7c01)
---[ end trace 7e42dd9a39ed2281 ]---
Fix by using mt76_dev_phy() which will map band_idx to the correct phy
for all hardware combinations. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix may_goto with negative offset.
Zac's syzbot crafted a bpf prog that exposed two bugs in may_goto.
The 1st bug is the way may_goto is patched. When offset is negative
it should be patched differently.
The 2nd bug is in the verifier:
when current state may_goto_depth is equal to visited state may_goto_depth
it means there is an actual infinite loop. It's not correct to prune
exploration of the program at this point.
Note, that this check doesn't limit the program to only one may_goto insn,
since 2nd and any further may_goto will increment may_goto_depth only
in the queued state pushed for future exploration. The current state
will have may_goto_depth == 0 regardless of number of may_goto insns
and the verifier has to explore the program until bpf_exit. |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: reject skb_copy(_expand) for fraglist GSO skbs
SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become
invalid. Return NULL if such an skb is passed to skb_copy or
skb_copy_expand, in order to prevent a crash on a potential later
call to skb_gso_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix uninitialized pointer dmactl
In the case where __lpass_get_dmactl_handle is called and the driver
id dai_id is invalid the pointer dmactl is not being assigned a value,
and dmactl contains a garbage value since it has not been initialized
and so the null check may not work. Fix this to initialize dmactl to
NULL. One could argue that modern compilers will set this to zero, but
it is useful to keep this initialized as per the same way in functions
__lpass_platform_codec_intf_init and lpass_cdc_dma_daiops_hw_params.
Cleans up clang scan build warning:
sound/soc/qcom/lpass-cdc-dma.c:275:7: warning: Branch condition
evaluates to a garbage value [core.uninitialized.Branch] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS
For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. However, variable offset ptr alu is not prohibited
for this ptr kind. So the variable offset is not checked.
The following prog is accepted:
func#0 @0
0: R1=ctx() R10=fp0
0: (bf) r6 = r1 ; R1=ctx() R6_w=ctx()
1: (79) r7 = *(u64 *)(r6 +144) ; R6_w=ctx() R7_w=flow_keys()
2: (b7) r8 = 1024 ; R8_w=1024
3: (37) r8 /= 1 ; R8_w=scalar()
4: (57) r8 &= 1024 ; R8_w=scalar(smin=smin32=0,
smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400))
5: (0f) r7 += r8
mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024
mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1
mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024
6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off
=(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024,
var_off=(0x0; 0x400))
6: (79) r0 = *(u64 *)(r7 +0) ; R0_w=scalar()
7: (95) exit
This prog loads flow_keys to r7, and adds the variable offset r8
to r7, and finally causes out-of-bounds access:
BUG: unable to handle page fault for address: ffffc90014c80038
[...]
Call Trace:
<TASK>
bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline]
__bpf_prog_run include/linux/filter.h:651 [inline]
bpf_prog_run include/linux/filter.h:658 [inline]
bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline]
bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991
bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359
bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline]
__sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475
__do_sys_bpf kernel/bpf/syscall.c:5561 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5559 [inline]
__x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Fix this by rejecting ptr alu with variable offset on flow_keys.
Applying the patch rejects the program with "R7 pointer arithmetic
on flow_keys prohibited". |
| In the Linux kernel, the following vulnerability has been resolved:
mac80211: track only QoS data frames for admission control
For admission control, obviously all of that only works for
QoS data frames, otherwise we cannot even access the QoS
field in the header.
Syzbot reported (see below) an uninitialized value here due
to a status of a non-QoS nullfunc packet, which isn't even
long enough to contain the QoS header.
Fix this to only do anything for QoS data packets. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix memory ordering between normal and ordered work functions
Ordered work functions aren't guaranteed to be handled by the same thread
which executed the normal work functions. The only way execution between
normal/ordered functions is synchronized is via the WORK_DONE_BIT,
unfortunately the used bitops don't guarantee any ordering whatsoever.
This manifested as seemingly inexplicable crashes on ARM64, where
async_chunk::inode is seen as non-null in async_cow_submit which causes
submit_compressed_extents to be called and crash occurs because
async_chunk::inode suddenly became NULL. The call trace was similar to:
pc : submit_compressed_extents+0x38/0x3d0
lr : async_cow_submit+0x50/0xd0
sp : ffff800015d4bc20
<registers omitted for brevity>
Call trace:
submit_compressed_extents+0x38/0x3d0
async_cow_submit+0x50/0xd0
run_ordered_work+0xc8/0x280
btrfs_work_helper+0x98/0x250
process_one_work+0x1f0/0x4ac
worker_thread+0x188/0x504
kthread+0x110/0x114
ret_from_fork+0x10/0x18
Fix this by adding respective barrier calls which ensure that all
accesses preceding setting of WORK_DONE_BIT are strictly ordered before
setting the flag. At the same time add a read barrier after reading of
WORK_DONE_BIT in run_ordered_work which ensures all subsequent loads
would be strictly ordered after reading the bit. This in turn ensures
are all accesses before WORK_DONE_BIT are going to be strictly ordered
before any access that can occur in ordered_func. |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcp251xfd: mcp251xfd_probe(): fix an error pointer dereference in probe
When we converted this code to use dev_err_probe() we accidentally
removed a return. It means that if devm_clk_get() it will lead to an
Oops when we call clk_get_rate() on the next line. |
| Microsoft Message Queuing Information Disclosure Vulnerability |
| Windows Cryptographic Services Remote Code Execution Vulnerability |
| Microsoft Brokering File System Elevation of Privilege Vulnerability |
| Microsoft Virtual Machine Bus (VMBus) Denial of Service Vulnerability |
| Windows rndismp6.sys Remote Code Execution Vulnerability |
| LibJS in Ladybird before f5a6704 mishandles the freeing of the vector that arguments_list references, leading to a use-after-free, and allowing remote attackers to execute arbitrary code via a crafted .js file. NOTE: the GitHub README says "Ladybird is in a pre-alpha state, and only suitable for use by developers." |
| Acrobat Reader versions 24.001.30225, 20.005.30748, 25.001.20428 and earlier are affected by an Access of Uninitialized Pointer vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Acrobat Reader versions 24.001.30225, 20.005.30748, 25.001.20428 and earlier are affected by an Access of Uninitialized Pointer vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Adobe Media Encoder version 15.2 (and earlier) is affected by an uninitialized pointer vulnerability when parsing a specially crafted file. An unauthenticated attacker could leverage this vulnerability to read arbitrary file system information in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Adobe Premiere Rush versions 1.5.16 (and earlier) allows access to an uninitialized pointer vulnerability that allows remote attackers to disclose arbitrary data on affected installations. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of MP4 files. The issue results from the lack of proper initialization of memory prior to accessing it. |
| Adobe Premiere Rush versions 1.5.16 (and earlier) allows access to an uninitialized pointer vulnerability that allows remote attackers to disclose sensitive information on affected installations. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of MP4 files. The issue results from the lack of proper initialization of memory prior to accessing it. |