| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: convert workqueues to unbound
When a workqueue is created with `WQ_UNBOUND`, its work items are
served by special worker-pools, whose host workers are not bound to
any specific CPU. In the default configuration (i.e. when
`queue_delayed_work` and friends do not specify which CPU to run the
work item on), `WQ_UNBOUND` allows the work item to be executed on any
CPU in the same node of the CPU it was enqueued on. While this
solution potentially sacrifices locality, it avoids contention with
other processes that might dominate the CPU time of the processor the
work item was scheduled on.
This is not just a theoretical problem: in a particular scenario
misconfigured process was hogging most of the time from CPU0, leaving
less than 0.5% of its CPU time to the kworker. The IDPF workqueues
that were using the kworker on CPU0 suffered large completion delays
as a result, causing performance degradation, timeouts and eventual
system crash.
* I have also run a manual test to gauge the performance
improvement. The test consists of an antagonist process
(`./stress --cpu 2`) consuming as much of CPU 0 as possible. This
process is run under `taskset 01` to bind it to CPU0, and its
priority is changed with `chrt -pQ 9900 10000 ${pid}` and
`renice -n -20 ${pid}` after start.
Then, the IDPF driver is forced to prefer CPU0 by editing all calls
to `queue_delayed_work`, `mod_delayed_work`, etc... to use CPU 0.
Finally, `ktraces` for the workqueue events are collected.
Without the current patch, the antagonist process can force
arbitrary delays between `workqueue_queue_work` and
`workqueue_execute_start`, that in my tests were as high as
`30ms`. With the current patch applied, the workqueue can be
migrated to another unloaded CPU in the same node, and, keeping
everything else equal, the maximum delay I could see was `6us`. |
| An issue was discovered in the NDIS Usermode IO driver (RtkIOAC60.sys, version 6.0.5600.16348) allowing local authenticated attackers to send a crafted IOCTL request to the driver to cause a denial of service. |
| Uncontrolled Resource Consumption vulnerability in Legion of the Bouncy Castle Inc. Bouncy Castle for Java FIPS bc-fips on All (API modules), Legion of the Bouncy Castle Inc. Bouncy Castle for Java LTS bcprov-lts8on on All (API modules) allows Excessive Allocation. This vulnerability is associated with program files core/src/main/jdk1.9/org/bouncycastle/crypto/fips/AESNativeCFB.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/fips/AESNativeGCM.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/fips/SHA256NativeDigest.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/fips/AESNativeEngine.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/fips/AESNativeCBC.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/fips/AESNativeCTR.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeCFB.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeGCM.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeEngine.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeCBC.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeGCMSIV.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeCCM.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/engines/AESNativeCTR.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/digests/SHA256NativeDigest.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/digests/SHA224NativeDigest.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/digests/SHA3NativeDigest.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/digests/SHAKENativeDigest.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/digests/SHA512NativeDigest.Java, core/src/main/jdk1.9/org/bouncycastle/crypto/digests/SHA384NativeDigest.Java.
This issue affects Bouncy Castle for Java FIPS: from 2.1.0 through 2.1.1; Bouncy Castle for Java LTS: from 2.73.0 through 2.73.7. |
| Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects. |
| It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-default configurations. This could allows attackers with control over Thread Context Map (MDC) input data when the logging configuration uses a non-default Pattern Layout with either a Context Lookup (for example, $${ctx:loginId}) or a Thread Context Map pattern (%X, %mdc, or %MDC) to craft malicious input data using a JNDI Lookup pattern resulting in an information leak and remote code execution in some environments and local code execution in all environments. Log4j 2.16.0 (Java 8) and 2.12.2 (Java 7) fix this issue by removing support for message lookup patterns and disabling JNDI functionality by default. |
| Uncontrolled Resource Consumption vulnerability in Legion of the Bouncy Castle Inc. Bouncy Castle for Java FIPS bc-fips on All (API modules), Legion of the Bouncy Castle Inc. Bouncy Castle for Java LTS bcprov-lts8on on All (API modules) allows Excessive Allocation. This vulnerability is associated with program files org/bouncycastle/crypto/fips/AESNativeCBC.Java, org/bouncycastle/crypto/engines/AESNativeCBC.Java.
This issue affects Bouncy Castle for Java FIPS: 2.1.0; Bouncy Castle for Java LTS: from 2.73.0 through 2.73.7. |
| OpenBao is an open source identity-based secrets management system. In OpenBao versions prior to 2.4.1, JSON objects after decoding may use significantly more memory than their serialized version. It is possible to craft a JSON payload to maximize the factor between serialized memory usage and deserialized memory usage, similar to a zip bomb, with factors reaching approximately 35. This can be used to circumvent the max_request_size configuration parameter which is intended to protect against denial of service attacks. The request body is parsed into a map very early in the request handling chain before authentication, which means an unauthenticated attacker can send a specifically crafted JSON object and cause an out-of-memory crash. Additionally, for requests with large numbers of strings, the audit subsystem can consume large quantities of CPU. The vulnerability is fixed in version 2.4.1. |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the Oracle Solaris product of Oracle Systems (component: Kernel). The supported version that is affected is 11. Easily exploitable vulnerability allows low privileged attacker with logon to the infrastructure where Oracle Solaris executes to compromise Oracle Solaris. While the vulnerability is in Oracle Solaris, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Oracle Solaris. CVSS 3.1 Base Score 6.5 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.0-8.0.43, 8.4.0-8.4.6 and 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.0-8.0.43, 8.4.0-8.4.6 and 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.0-8.0.43, 8.4.0-8.4.6 and 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the Oracle ZFS Storage Appliance Kit product of Oracle Systems (component: Analytics). The supported version that is affected is 8.8. Easily exploitable vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle ZFS Storage Appliance Kit. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Oracle ZFS Storage Appliance Kit. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.0-8.0.43, 8.4.0-8.4.6 and 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: Performance Monitor). Supported versions that are affected are 8.60, 8.61 and 8.62. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of PeopleSoft Enterprise PeopleTools. CVSS 3.1 Base Score 7.5 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.0-8.0.43, 8.4.0-8.4.6 and 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server as well as unauthorized update, insert or delete access to some of MySQL Server accessible data. CVSS 3.1 Base Score 5.5 (Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:L/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: DML). Supported versions that are affected are 8.0.0-8.0.43, 8.4.0-8.4.6 and 9.0.0-9.4.0. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server as well as unauthorized update, insert or delete access to some of MySQL Server accessible data. CVSS 3.1 Base Score 5.5 (Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:L/A:H). |
| Vulnerability in the Oracle ZFS Storage Appliance Kit product of Oracle Systems (component: Core). The supported version that is affected is 8.8. Easily exploitable vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle ZFS Storage Appliance Kit. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Oracle ZFS Storage Appliance Kit. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the Oracle ZFS Storage Appliance Kit product of Oracle Systems (component: Remote Replication). The supported version that is affected is 8.8. Easily exploitable vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle ZFS Storage Appliance Kit. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Oracle ZFS Storage Appliance Kit. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the Oracle ZFS Storage Appliance Kit product of Oracle Systems (component: Remote Replication). The supported version that is affected is 8.8. Easily exploitable vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle ZFS Storage Appliance Kit. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Oracle ZFS Storage Appliance Kit. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |