| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Glory RBG-100 recycler systems using the ISPK-08 software component contain hard-coded operating system credentials that allow remote authentication to the underlying Linux system. Multiple local user accounts, including accounts with administrative privileges, were found to have fixed, embedded passwords. An attacker with network access to exposed services such as SSH may authenticate using these credentials and gain unauthorized access to the system. Successful exploitation allows remote access with elevated privileges and may result in full system compromise. |
| A vulnerability was determined in Wavlink WL-WN579A3 up to 20210219. Affected is an unknown function of the file /cgi-bin/login.cgi. Executing a manipulation of the argument key can lead to command injection. The attack may be launched remotely. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was identified in Wavlink WL-WN579A3 up to 20210219. Affected by this vulnerability is the function Delete_Mac_list of the file /cgi-bin/wireless.cgi. The manipulation of the argument delete_list leads to command injection. Remote exploitation of the attack is possible. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| The specific flaw exists within the Bluetooth stack developed by Alps Alpine of the Infotainment ECU manufactured by Bosch. The issue results from the lack of proper boundary validation of user-supplied data, which can result in a stack-based buffer overflow when receiving a specific packet on the established upper layer L2CAP channel. An attacker can leverage this vulnerability to obtain remote code execution on the Infotainment ECU with root privileges.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| A security vulnerability has been detected in MindsDB up to 25.14.1. This vulnerability affects the function clear_filename of the file mindsdb/utilities/security.py of the component File Upload. Such manipulation leads to server-side request forgery. The attack may be performed from remote. The exploit has been disclosed publicly and may be used. The name of the patch is 74d6f0fd4b630218519a700fbee1c05c7fd4b1ed. It is best practice to apply a patch to resolve this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: add bounds check for if_id in IRQ handler
The IRQ handler extracts if_id from the upper 16 bits of the hardware
status register and uses it to index into ethsw->ports[] without
validation. Since if_id can be any 16-bit value (0-65535) but the ports
array is only allocated with sw_attr.num_ifs elements, this can lead to
an out-of-bounds read potentially.
Add a bounds check before accessing the array, consistent with the
existing validation in dpaa2_switch_rx(). |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
procfs: avoid fetching build ID while holding VMA lock
Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock
or per-VMA lock, whichever was used to lock VMA under question, to avoid
deadlock reported by syzbot:
-> #1 (&mm->mmap_lock){++++}-{4:4}:
__might_fault+0xed/0x170
_copy_to_iter+0x118/0x1720
copy_page_to_iter+0x12d/0x1e0
filemap_read+0x720/0x10a0
blkdev_read_iter+0x2b5/0x4e0
vfs_read+0x7f4/0xae0
ksys_read+0x12a/0x250
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}:
__lock_acquire+0x1509/0x26d0
lock_acquire+0x185/0x340
down_read+0x98/0x490
blkdev_read_iter+0x2a7/0x4e0
__kernel_read+0x39a/0xa90
freader_fetch+0x1d5/0xa80
__build_id_parse.isra.0+0xea/0x6a0
do_procmap_query+0xd75/0x1050
procfs_procmap_ioctl+0x7a/0xb0
__x64_sys_ioctl+0x18e/0x210
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(&mm->mmap_lock);
lock(&sb->s_type->i_mutex_key#8);
lock(&mm->mmap_lock);
rlock(&sb->s_type->i_mutex_key#8);
*** DEADLOCK ***
This seems to be exacerbated (as we haven't seen these syzbot reports
before that) by the recent:
777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context")
To make this safe, we need to grab file refcount while VMA is still locked, but
other than that everything is pretty straightforward. Internal build_id_parse()
API assumes VMA is passed, but it only needs the underlying file reference, so
just add another variant build_id_parse_file() that expects file passed
directly.
[akpm@linux-foundation.org: fix up kerneldoc] |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix ECMP sibling count mismatch when clearing RTF_ADDRCONF
syzbot reported a kernel BUG in fib6_add_rt2node() when adding an IPv6
route. [0]
Commit f72514b3c569 ("ipv6: clear RA flags when adding a static
route") introduced logic to clear RTF_ADDRCONF from existing routes
when a static route with the same nexthop is added. However, this
causes a problem when the existing route has a gateway.
When RTF_ADDRCONF is cleared from a route that has a gateway, that
route becomes eligible for ECMP, i.e. rt6_qualify_for_ecmp() returns
true. The issue is that this route was never added to the
fib6_siblings list.
This leads to a mismatch between the following counts:
- The sibling count computed by iterating fib6_next chain, which
includes the newly ECMP-eligible route
- The actual siblings in fib6_siblings list, which does not include
that route
When a subsequent ECMP route is added, fib6_add_rt2node() hits
BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings) because the
counts don't match.
Fix this by only clearing RTF_ADDRCONF when the existing route does
not have a gateway. Routes without a gateway cannot qualify for ECMP
anyway (rt6_qualify_for_ecmp() requires fib_nh_gw_family), so clearing
RTF_ADDRCONF on them is safe and matches the original intent of the
commit.
[0]:
kernel BUG at net/ipv6/ip6_fib.c:1217!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6010 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:fib6_add_rt2node+0x3433/0x3470 net/ipv6/ip6_fib.c:1217
[...]
Call Trace:
<TASK>
fib6_add+0x8da/0x18a0 net/ipv6/ip6_fib.c:1532
__ip6_ins_rt net/ipv6/route.c:1351 [inline]
ip6_route_add+0xde/0x1b0 net/ipv6/route.c:3946
ipv6_route_ioctl+0x35c/0x480 net/ipv6/route.c:4571
inet6_ioctl+0x219/0x280 net/ipv6/af_inet6.c:577
sock_do_ioctl+0xdc/0x300 net/socket.c:1245
sock_ioctl+0x576/0x790 net/socket.c:1366
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw_new: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/496
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 496 Comm: rpcbind Not tainted 6.19.0-rc6-next-20260122-yocto-standard+ #8 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0xd8
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x5
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains multiple reflected cross-site scripting vulnerabilities in the dhcp.cgi script that allow attackers to inject malicious scripts through multiple parameters. Attackers can submit POST requests to dhcp.cgi with script payloads in parameters such as BOOT_SERVER, BOOT_FILE, BOOT_ROOT, START_ADDR, END_ADDR, DNS1, DNS2, NTP1, NTP2, WINS1, WINS2, DEFAULT_LEASE_TIME, MAX_LEASE_TIME, DOMAIN_NAME, NIS_DOMAIN, NIS1, NIS2, STATIC_HOST, STATIC_DESC, STATIC_MAC, and STATIC_IP to execute arbitrary JavaScript in user browsers. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains a reflected cross-site scripting vulnerability that allows unauthenticated attackers to inject malicious scripts by manipulating the NTP_SERVER parameter. Attackers can send POST requests to the time.cgi endpoint with script payloads in the NTP_SERVER parameter to execute arbitrary JavaScript in users' browsers. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains multiple reflected cross-site scripting vulnerabilities in the portfw.cgi script that allow attackers to inject malicious scripts through unvalidated parameters. Attackers can submit POST requests with script payloads in the EXT, SRC_PORT_SEL, SRC_PORT, DEST_IP, DEST_PORT_SEL, or COMMENT parameters to execute arbitrary JavaScript in users' browsers. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains a reflected cross-site scripting vulnerability that allows unauthenticated attackers to inject malicious scripts by exploiting insufficient input validation. Attackers can submit POST requests to the smoothinfo.cgi endpoint with script payloads in the WRAP or SECTIONTITLE parameters to execute arbitrary JavaScript in victim browsers. |
| A vulnerability was found in EFM iptime A6004MX 14.18.2. Affected is the function commit_vpncli_file_upload of the file /cgi/timepro.cgi. The manipulation results in unrestricted upload. The attack may be performed from remote. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| SmarterTools SmarterMail before 9526 allows XSS via MAPI requests. |
| Stored Cross-Site Scripting (XSS) vulnerability in Kubysoft, where uploaded SVG images are not properly sanitized. This allows attackers to embed malicious scripts within SVG files as visual content, which are then stored on the server and executed in the context of any user accessing the compromised resource. |
| A weakness has been identified in JeecgBoot 3.9.1. This vulnerability affects the function importDocumentFromZip of the file org/jeecg/modules/airag/llm/controller/AiragKnowledgeController.java of the component Retrieval-Augmented Generation. Executing a manipulation can lead to deserialization. The attack can be launched remotely. Attacks of this nature are highly complex. It is stated that the exploitability is difficult. The project was informed of the problem early through an issue report but has not responded yet. |
| A security vulnerability has been detected in cskefu up to 8.0.1. This issue affects some unknown processing of the file com/cskefu/cc/controller/resource/MediaController.java of the component Endpoint. The manipulation of the argument url leads to server-side request forgery. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |