Search Results (40780 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-58010 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: binfmt_flat: Fix integer overflow bug on 32 bit systems Most of these sizes and counts are capped at 256MB so the math doesn't result in an integer overflow. The "relocs" count needs to be checked as well. Otherwise on 32bit systems the calculation of "full_data" could be wrong. full_data = data_len + relocs * sizeof(unsigned long);
CVE-2024-58007 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.1 High
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: socinfo: Avoid out of bounds read of serial number On MSM8916 devices, the serial number exposed in sysfs is constant and does not change across individual devices. It's always: db410c:/sys/devices/soc0$ cat serial_number 2644893864 The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not have support for the serial_num field in the socinfo struct. There is an existing check to avoid exposing the serial number in that case, but it's not correct: When checking the item_size returned by SMEM, we need to make sure the *end* of the serial_num is within bounds, instead of comparing with the *start* offset. The serial_number currently exposed on MSM8916 devices is just an out of bounds read of whatever comes after the socinfo struct in SMEM. Fix this by changing offsetof() to offsetofend(), so that the size of the field is also taken into account.
CVE-2024-57998 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: OPP: add index check to assert to avoid buffer overflow in _read_freq() Pass the freq index to the assert function to make sure we do not read a freq out of the opp->rates[] table when called from the indexed variants: dev_pm_opp_find_freq_exact_indexed() or dev_pm_opp_find_freq_ceil/floor_indexed(). Add a secondary parameter to the assert function, unused for assert_single_clk() then add assert_clk_index() which will check for the clock index when called from the _indexed() find functions.
CVE-2024-57996 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net_sched: sch_sfq: don't allow 1 packet limit The current implementation does not work correctly with a limit of 1. iproute2 actually checks for this and this patch adds the check in kernel as well. This fixes the following syzkaller reported crash: UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:210:6 index 65535 is out of range for type 'struct sfq_head[128]' CPU: 0 PID: 2569 Comm: syz-executor101 Not tainted 5.10.0-smp-DEV #1 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x125/0x19f lib/dump_stack.c:120 ubsan_epilogue lib/ubsan.c:148 [inline] __ubsan_handle_out_of_bounds+0xed/0x120 lib/ubsan.c:347 sfq_link net/sched/sch_sfq.c:210 [inline] sfq_dec+0x528/0x600 net/sched/sch_sfq.c:238 sfq_dequeue+0x39b/0x9d0 net/sched/sch_sfq.c:500 sfq_reset+0x13/0x50 net/sched/sch_sfq.c:525 qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026 tbf_reset+0x3d/0x100 net/sched/sch_tbf.c:319 qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026 dev_reset_queue+0x8c/0x140 net/sched/sch_generic.c:1296 netdev_for_each_tx_queue include/linux/netdevice.h:2350 [inline] dev_deactivate_many+0x6dc/0xc20 net/sched/sch_generic.c:1362 __dev_close_many+0x214/0x350 net/core/dev.c:1468 dev_close_many+0x207/0x510 net/core/dev.c:1506 unregister_netdevice_many+0x40f/0x16b0 net/core/dev.c:10738 unregister_netdevice_queue+0x2be/0x310 net/core/dev.c:10695 unregister_netdevice include/linux/netdevice.h:2893 [inline] __tun_detach+0x6b6/0x1600 drivers/net/tun.c:689 tun_detach drivers/net/tun.c:705 [inline] tun_chr_close+0x104/0x1b0 drivers/net/tun.c:3640 __fput+0x203/0x840 fs/file_table.c:280 task_work_run+0x129/0x1b0 kernel/task_work.c:185 exit_task_work include/linux/task_work.h:33 [inline] do_exit+0x5ce/0x2200 kernel/exit.c:931 do_group_exit+0x144/0x310 kernel/exit.c:1046 __do_sys_exit_group kernel/exit.c:1057 [inline] __se_sys_exit_group kernel/exit.c:1055 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:1055 do_syscall_64+0x6c/0xd0 entry_SYSCALL_64_after_hwframe+0x61/0xcb RIP: 0033:0x7fe5e7b52479 Code: Unable to access opcode bytes at RIP 0x7fe5e7b5244f. RSP: 002b:00007ffd3c800398 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fe5e7b52479 RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000 RBP: 00007fe5e7bcd2d0 R08: ffffffffffffffb8 R09: 0000000000000014 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe5e7bcd2d0 R13: 0000000000000000 R14: 00007fe5e7bcdd20 R15: 00007fe5e7b24270 The crash can be also be reproduced with the following (with a tc recompiled to allow for sfq limits of 1): tc qdisc add dev dummy0 handle 1: root tbf rate 1Kbit burst 100b lat 1s ../iproute2-6.9.0/tc/tc qdisc add dev dummy0 handle 2: parent 1:10 sfq limit 1 ifconfig dummy0 up ping -I dummy0 -f -c2 -W0.1 8.8.8.8 sleep 1 Scenario that triggers the crash: * the first packet is sent and queued in TBF and SFQ; qdisc qlen is 1 * TBF dequeues: it peeks from SFQ which moves the packet to the gso_skb list and keeps qdisc qlen set to 1. TBF is out of tokens so it schedules itself for later. * the second packet is sent and TBF tries to queues it to SFQ. qdisc qlen is now 2 and because the SFQ limit is 1 the packet is dropped by SFQ. At this point qlen is 1, and all of the SFQ slots are empty, however q->tail is not NULL. At this point, assuming no more packets are queued, when sch_dequeue runs again it will decrement the qlen for the current empty slot causing an underflow and the subsequent out of bounds access.
CVE-2024-57973 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rdma/cxgb4: Prevent potential integer overflow on 32bit The "gl->tot_len" variable is controlled by the user. It comes from process_responses(). On 32bit systems, the "gl->tot_len + sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header)" addition could have an integer wrapping bug. Use size_add() to prevent this.
CVE-2024-57945 1 Linux 1 Linux Kernel 2025-11-03 7.1 High
In the Linux kernel, the following vulnerability has been resolved: riscv: mm: Fix the out of bound issue of vmemmap address In sparse vmemmap model, the virtual address of vmemmap is calculated as: ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)). And the struct page's va can be calculated with an offset: (vmemmap + (pfn)). However, when initializing struct pages, kernel actually starts from the first page from the same section that phys_ram_base belongs to. If the first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then we get an va below VMEMMAP_START when calculating va for it's struct page. For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the first page in the same section is actually pfn 0x80000. During init_unavailable_range(), we will initialize struct page for pfn 0x80000 with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is below VMEMMAP_START as well as PCI_IO_END. This commit fixes this bug by introducing a new variable 'vmemmap_start_pfn' which is aligned with memory section size and using it to calculate vmemmap address instead of phys_ram_base.
CVE-2024-57259 1 Denx 1 U-boot 2025-11-03 7.1 High
sqfs_search_dir in Das U-Boot before 2025.01-rc1 exhibits an off-by-one error and resultant heap memory corruption for squashfs directory listing because the path separator is not considered in a size calculation.
CVE-2024-57258 1 Denx 1 U-boot 2025-11-03 7.1 High
Integer overflows in memory allocation in Das U-Boot before 2025.01-rc1 occur for a crafted squashfs filesystem via sbrk, via request2size, or because ptrdiff_t is mishandled on x86_64.
CVE-2024-57256 1 Denx 1 U-boot 2025-11-03 7.1 High
An integer overflow in ext4fs_read_symlink in Das U-Boot before 2025.01-rc1 occurs for zalloc (adding one to an le32 variable) via a crafted ext4 filesystem with an inode size of 0xffffffff, resulting in a malloc of zero and resultant memory overwrite.
CVE-2024-57255 1 Denx 1 U-boot 2025-11-03 7.1 High
An integer overflow in sqfs_resolve_symlink in Das U-Boot before 2025.01-rc1 occurs via a crafted squashfs filesystem with an inode size of 0xffffffff, resulting in a malloc of zero and resultant memory overwrite.
CVE-2024-57254 1 Denx 1 U-boot 2025-11-03 7.1 High
An integer overflow in sqfs_inode_size in Das U-Boot before 2025.01-rc1 occurs in the symlink size calculation via a crafted squashfs filesystem.
CVE-2024-56378 2 Freedesktop, Poppler 2 Poppler, Poppler 2025-11-03 4.3 Medium
libpoppler.so in Poppler through 24.12.0 has an out-of-bounds read vulnerability within the JBIG2Bitmap::combine function in JBIG2Stream.cc.
CVE-2024-56326 2 Palletsprojects, Redhat 15 Jinja, Ansible Automation Platform, Discovery and 12 more 2025-11-03 7.8 High
Jinja is an extensible templating engine. Prior to 3.1.5, An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. This vulnerability is fixed in 3.1.5.
CVE-2024-54551 2 Apple, Redhat 13 Ipados, Iphone Os, Macos and 10 more 2025-11-03 7.5 High
The issue was addressed with improved memory handling. This issue is fixed in watchOS 10.6, tvOS 17.6, Safari 17.6, macOS Sonoma 14.6, visionOS 1.3, iOS 17.6 and iPadOS 17.6. Processing web content may lead to a denial-of-service.
CVE-2024-54028 2 Catdoc, Catdoc Project 2 Catdoc, Catdoc 2025-11-03 8.4 High
An integer underflow vulnerability exists in the OLE Document DIFAT Parser functionality of catdoc 0.95. A specially crafted malformed file can lead to heap-based memory corruption. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2024-53203 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: usb: typec: fix potential array underflow in ucsi_ccg_sync_control() The "command" variable can be controlled by the user via debugfs. The worry is that if con_index is zero then "&uc->ucsi->connector[con_index - 1]" would be an array underflow.
CVE-2024-52035 2 Catdoc, Catdoc Project 2 Catdoc, Catdoc 2025-11-03 8.4 High
An integer overflow vulnerability exists in the OLE Document File Allocation Table Parser functionality of catdoc 0.95. A specially crafted malformed file can lead to heap-based memory corruption. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2024-50597 1 St 10 X-cube-azrt-h7rs, X-cube-azrtos-f4, X-cube-azrtos-f7 and 7 more 2025-11-03 4.3 Medium
An integer underflow vulnerability exists in the HTTP server PUT request functionality of STMicroelectronics X-CUBE-AZRTOS-WL 2.0.0. A specially crafted network packet can lead to denial of service. An attacker can send a malicious packet to trigger this vulnerability.This vulnerability affects the NetX Duo Component HTTP Server implementation which can be found in x-cube-azrtos-f7\Middlewares\ST\netxduo\addons\http\nxd_http_server.c
CVE-2024-50596 1 St 10 X-cube-azrt-h7rs, X-cube-azrtos-f4, X-cube-azrtos-f7 and 7 more 2025-11-03 4.3 Medium
An integer underflow vulnerability exists in the HTTP server PUT request functionality of STMicroelectronics X-CUBE-AZRTOS-WL 2.0.0. A specially crafted network packet can lead to denial of service. An attacker can send a malicious packet to trigger this vulnerability.This vulnerability affects the NetX Duo Web Component HTTP Server implementation which can be found in x-cube-azrtos-f7\Middlewares\ST\netxduo\addons\web\nx_web_http_server.c
CVE-2024-50595 1 St 10 X-cube-azrt-h7rs, X-cube-azrtos-f4, X-cube-azrtos-f7 and 7 more 2025-11-03 4.3 Medium
An integer underflow vulnerability exists in the HTTP server PUT request functionality of STMicroelectronics X-CUBE-AZRTOS-WL 2.0.0. A specially crafted series of network requests can lead to denial of service. An attacker can send a sequence of malicious packets to trigger this vulnerability.This vulnerability affects the NetX Duo Component HTTP Server implementation which can be found in x-cube-azrtos-f7\Middlewares\ST\netxduo\addons\http\nxd_http_server.c