| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm: prevent poison consumption when splitting THP
When performing memory error injection on a THP (Transparent Huge Page)
mapped to userspace on an x86 server, the kernel panics with the following
trace. The expected behavior is to terminate the affected process instead
of panicking the kernel, as the x86 Machine Check code can recover from an
in-userspace #MC.
mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134
mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0}
mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db
mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320
mce: [Hardware Error]: Run the above through 'mcelog --ascii'
mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel
Kernel panic - not syncing: Fatal local machine check
The root cause of this panic is that handling a memory failure triggered
by an in-userspace #MC necessitates splitting the THP. The splitting
process employs a mechanism, implemented in
try_to_map_unused_to_zeropage(), which reads the pages in the THP to
identify zero-filled pages. However, reading the pages in the THP results
in a second in-kernel #MC, occurring before the initial memory_failure()
completes, ultimately leading to a kernel panic. See the kernel panic
call trace on the two #MCs.
First Machine Check occurs // [1]
memory_failure() // [2]
try_to_split_thp_page()
split_huge_page()
split_huge_page_to_list_to_order()
__folio_split() // [3]
remap_page()
remove_migration_ptes()
remove_migration_pte()
try_to_map_unused_to_zeropage() // [4]
memchr_inv() // [5]
Second Machine Check occurs // [6]
Kernel panic
[1] Triggered by accessing a hardware-poisoned THP in userspace, which is
typically recoverable by terminating the affected process.
[2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page().
[3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page().
[4] Try to map the unused THP to zeropage.
[5] Re-access pages in the hw-poisoned THP in the kernel.
[6] Triggered in-kernel, leading to a panic kernel.
In Step[2], memory_failure() sets the poisoned flag on the page in the THP
by TestSetPageHWPoison() before calling try_to_split_thp_page().
As suggested by David Hildenbrand, fix this panic by not accessing to the
poisoned page in the THP during zeropage identification, while continuing
to scan unaffected pages in the THP for possible zeropage mapping. This
prevents a second in-kernel #MC that would cause kernel panic in Step[4].
Thanks to Andrew Zaborowski for his initial work on fixing this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix potential memory leak by cleaning ops_filter in damon_destroy_scheme
Currently, damon_destroy_scheme() only cleans up the filter list but
leaves ops_filter untouched, which could lead to memory leaks when a
scheme is destroyed.
This patch ensures both filter and ops_filter are properly freed in
damon_destroy_scheme(), preventing potential memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: catch commit test ctx alloc failure
Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation".
DAMON sysfs interface dynamically allocates and uses a damon_ctx object
for testing if given inputs for online DAMON parameters update is valid.
The object is being used without an allocation failure check, and leaked
when the test succeeds. Fix the two bugs.
This patch (of 2):
The damon_ctx for testing online DAMON parameters commit inputs is used
without its allocation failure check. This could result in an invalid
memory access. Fix it by directly returning an error when the allocation
failed. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: dealloc commit test ctx always
The damon_ctx for testing online DAMON parameters commit inputs is
deallocated only when the test fails. This means memory is leaked for
every successful online DAMON parameters commit. Fix the leak by always
deallocating it. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Account for failed debug initialization
When the SCMI debug subsystem fails to initialize, the related debug root
will be missing, and the underlying descriptor will be NULL.
Handle this fault condition in the SCMI debug helpers that maintain
metrics counters. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/IOV: Add PCI rescan-remove locking when enabling/disabling SR-IOV
Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.
Since commit 9d16947b7583 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d150fc
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.
On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:
PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56)
GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
0000000000000001 0000000000000000 0000000000000000 0000000180692828
00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
#0 [3800313fb20] device_del at c9158ad5c
#1 [3800313fb88] pci_remove_bus_device at c915105ba
#2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
#3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
#4 [3800313fc60] zpci_bus_remove_device at c90fb6104
#5 [3800313fca0] __zpci_event_availability at c90fb3dca
#6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
#7 [3800313fd60] crw_collect_info at c91905822
#8 [3800313fe10] kthread at c90feb390
#9 [3800313fe68] __ret_from_fork at c90f6aa64
#10 [3800313fe98] ret_from_fork at c9194f3f2.
This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.
Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.
Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking. |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: Fix use-after-free in hdm_disconnect
hdm_disconnect() calls most_deregister_interface(), which eventually
unregisters the MOST interface device with device_unregister(iface->dev).
If that drops the last reference, the device core may call release_mdev()
immediately while hdm_disconnect() is still executing.
The old code also freed several mdev-owned allocations in
hdm_disconnect() and then performed additional put_device() calls.
Depending on refcount order, this could lead to use-after-free or
double-free when release_mdev() ran (or when unregister paths also
performed puts).
Fix by moving the frees of mdev-owned allocations into release_mdev(),
so they happen exactly once when the device is truly released, and by
dropping the extra put_device() calls in hdm_disconnect() that are
redundant after device_unregister() and most_deregister_interface().
This addresses the KASAN slab-use-after-free reported by syzbot in
hdm_disconnect(). See report and stack traces in the bug link below. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: sh-sci: fix RSCI FIFO overrun handling
The receive error handling code is shared between RSCI and all other
SCIF port types, but the RSCI overrun_reg is specified as a memory
offset, while for other SCIF types it is an enum value used to index
into the sci_port_params->regs array, as mentioned above the
sci_serial_in() function.
For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call
inside the sci_handle_fifo_overrun() function to index outside the
bounds of the regs array, which currently has a size of 20, as specified
by SCI_NR_REGS.
Because of this, we end up accessing memory outside of RSCI's
rsci_port_params structure, which, when interpreted as a plat_sci_reg,
happens to have a non-zero size, causing the following WARN when
sci_serial_in() is called, as the accidental size does not match the
supported register sizes.
The existence of the overrun_reg needs to be checked because
SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not
present in the regs array.
Avoid calling sci_getreg() for port types which don't use standard
register handling.
Use the ops->read_reg() and ops->write_reg() functions to properly read
and write registers for RSCI, and change the type of the status variable
to accommodate the 32-bit CSR register.
sci_getreg() and sci_serial_in() are also called with overrun_reg in the
sci_mpxed_interrupt() interrupt handler, but that code path is not used
for RSCI, as it does not have a muxed interrupt.
------------[ cut here ]------------
Invalid register access
WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac
Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT
Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT)
pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : sci_serial_in+0x38/0xac
lr : sci_serial_in+0x38/0xac
sp : ffff800080003e80
x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d
x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80
x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000
x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a
x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720
x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720
x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48
x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48
x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80
Call trace:
sci_serial_in+0x38/0xac (P)
sci_handle_fifo_overrun.isra.0+0x70/0x134
sci_er_interrupt+0x50/0x39c
__handle_irq_event_percpu+0x48/0x140
handle_irq_event+0x44/0xb0
handle_fasteoi_irq+0xf4/0x1a0
handle_irq_desc+0x34/0x58
generic_handle_domain_irq+0x1c/0x28
gic_handle_irq+0x4c/0x140
call_on_irq_stack+0x30/0x48
do_interrupt_handler+0x80/0x84
el1_interrupt+0x34/0x68
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x6c/0x70
default_idle_call+0x28/0x58 (P)
do_idle+0x1f8/0x250
cpu_startup_entry+0x34/0x3c
rest_init+0xd8/0xe0
console_on_rootfs+0x0/0x6c
__primary_switched+0x88/0x90
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: mg4b: fix uninitialized iio scan data
Fix potential leak of uninitialized stack data to userspace by ensuring
that the `scan` structure is zeroed before use. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix livelock in synchronous file put from fuseblk workers
I observed a hang when running generic/323 against a fuseblk server.
This test opens a file, initiates a lot of AIO writes to that file
descriptor, and closes the file descriptor before the writes complete.
Unsurprisingly, the AIO exerciser threads are mostly stuck waiting for
responses from the fuseblk server:
# cat /proc/372265/task/372313/stack
[<0>] request_wait_answer+0x1fe/0x2a0 [fuse]
[<0>] __fuse_simple_request+0xd3/0x2b0 [fuse]
[<0>] fuse_do_getattr+0xfc/0x1f0 [fuse]
[<0>] fuse_file_read_iter+0xbe/0x1c0 [fuse]
[<0>] aio_read+0x130/0x1e0
[<0>] io_submit_one+0x542/0x860
[<0>] __x64_sys_io_submit+0x98/0x1a0
[<0>] do_syscall_64+0x37/0xf0
[<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53
But the /weird/ part is that the fuseblk server threads are waiting for
responses from itself:
# cat /proc/372210/task/372232/stack
[<0>] request_wait_answer+0x1fe/0x2a0 [fuse]
[<0>] __fuse_simple_request+0xd3/0x2b0 [fuse]
[<0>] fuse_file_put+0x9a/0xd0 [fuse]
[<0>] fuse_release+0x36/0x50 [fuse]
[<0>] __fput+0xec/0x2b0
[<0>] task_work_run+0x55/0x90
[<0>] syscall_exit_to_user_mode+0xe9/0x100
[<0>] do_syscall_64+0x43/0xf0
[<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53
The fuseblk server is fuse2fs so there's nothing all that exciting in
the server itself. So why is the fuse server calling fuse_file_put?
The commit message for the fstest sheds some light on that:
"By closing the file descriptor before calling io_destroy, you pretty
much guarantee that the last put on the ioctx will be done in interrupt
context (during I/O completion).
Aha. AIO fgets a new struct file from the fd when it queues the ioctx.
The completion of the FUSE_WRITE command from userspace causes the fuse
server to call the AIO completion function. The completion puts the
struct file, queuing a delayed fput to the fuse server task. When the
fuse server task returns to userspace, it has to run the delayed fput,
which in the case of a fuseblk server, it does synchronously.
Sending the FUSE_RELEASE command sychronously from fuse server threads
is a bad idea because a client program can initiate enough simultaneous
AIOs such that all the fuse server threads end up in delayed_fput, and
now there aren't any threads left to handle the queued fuse commands.
Fix this by only using asynchronous fputs when closing files, and leave
a comment explaining why. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/vaddr: do not repeat pte_offset_map_lock() until success
DAMON's virtual address space operation set implementation (vaddr) calls
pte_offset_map_lock() inside the page table walk callback function. This
is for reading and writing page table accessed bits. If
pte_offset_map_lock() fails, it retries by returning the page table walk
callback function with ACTION_AGAIN.
pte_offset_map_lock() can continuously fail if the target is a pmd
migration entry, though. Hence it could cause an infinite page table walk
if the migration cannot be done until the page table walk is finished.
This indeed caused a soft lockup when CPU hotplugging and DAMON were
running in parallel.
Avoid the infinite loop by simply not retrying the page table walk. DAMON
is promising only a best-effort accuracy, so missing access to such pages
is no problem. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rsrc: don't rely on user vaddr alignment
There is no guaranteed alignment for user pointers, however the
calculation of an offset of the first page into a folio after coalescing
uses some weird bit mask logic, get rid of it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix kernel panic on partial unmap of a GPU VA region
This commit address a kernel panic issue that can happen if Userspace
tries to partially unmap a GPU virtual region (aka drm_gpuva).
The VM_BIND interface allows partial unmapping of a BO.
Panthor driver pre-allocates memory for the new drm_gpuva structures
that would be needed for the map/unmap operation, done using drm_gpuvm
layer. It expected that only one new drm_gpuva would be needed on umap
but a partial unmap can require 2 new drm_gpuva and that's why it
ended up doing a NULL pointer dereference causing a kernel panic.
Following dump was seen when partial unmap was exercised.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078
Mem abort info:
ESR = 0x0000000096000046
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000
[000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000
Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP
<snip>
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor]
sp : ffff800085d43970
x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000
x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000
x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010
x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c
x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58
x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c
x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7
x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001
x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078
Call trace:
panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
op_remap_cb.isra.22+0x50/0x80
__drm_gpuvm_sm_unmap+0x10c/0x1c8
drm_gpuvm_sm_unmap+0x40/0x60
panthor_vm_exec_op+0xb4/0x3d0 [panthor]
panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor]
panthor_ioctl_vm_bind+0x160/0x4a0 [panthor]
drm_ioctl_kernel+0xbc/0x138
drm_ioctl+0x240/0x500
__arm64_sys_ioctl+0xb0/0xf8
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.1+0x98/0xf8
do_el0_svc+0x24/0x38
el0_svc+0x40/0xf8
el0t_64_sync_handler+0xa0/0xc8
el0t_64_sync+0x174/0x178 |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (cgbc-hwmon) Add missing NULL check after devm_kzalloc()
The driver allocates memory for sensor data using devm_kzalloc(), but
did not check if the allocation succeeded. In case of memory allocation
failure, dereferencing the NULL pointer would lead to a kernel crash.
Add a NULL pointer check and return -ENOMEM to handle allocation failure
properly. |
| In the Linux kernel, the following vulnerability has been resolved:
vfat: fix missing sb_min_blocksize() return value checks
When emulating an nvme device on qemu with both logical_block_size and
physical_block_size set to 8 KiB, but without format, a kernel panic
was triggered during the early boot stage while attempting to mount a
vfat filesystem.
[95553.682035] EXT4-fs (nvme0n1): unable to set blocksize
[95553.684326] EXT4-fs (nvme0n1): unable to set blocksize
[95553.686501] EXT4-fs (nvme0n1): unable to set blocksize
[95553.696448] ISOFS: unsupported/invalid hardware sector size 8192
[95553.697117] ------------[ cut here ]------------
[95553.697567] kernel BUG at fs/buffer.c:1582!
[95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary)
[95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0
[95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f
[95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246
[95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001
[95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000
[95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000
[95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
[95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000
[95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000
[95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0
[95553.708439] PKRU: 55555554
[95553.708734] Call Trace:
[95553.709015] <TASK>
[95553.709266] __getblk_slow+0xd2/0x230
[95553.709641] ? find_get_block_common+0x8b/0x530
[95553.710084] bdev_getblk+0x77/0xa0
[95553.710449] __bread_gfp+0x22/0x140
[95553.710810] fat_fill_super+0x23a/0xfc0
[95553.711216] ? __pfx_setup+0x10/0x10
[95553.711580] ? __pfx_vfat_fill_super+0x10/0x10
[95553.712014] vfat_fill_super+0x15/0x30
[95553.712401] get_tree_bdev_flags+0x141/0x1e0
[95553.712817] get_tree_bdev+0x10/0x20
[95553.713177] vfat_get_tree+0x15/0x20
[95553.713550] vfs_get_tree+0x2a/0x100
[95553.713910] vfs_cmd_create+0x62/0xf0
[95553.714273] __do_sys_fsconfig+0x4e7/0x660
[95553.714669] __x64_sys_fsconfig+0x20/0x40
[95553.715062] x64_sys_call+0x21ee/0x26a0
[95553.715453] do_syscall_64+0x80/0x670
[95553.715816] ? __fs_parse+0x65/0x1e0
[95553.716172] ? fat_parse_param+0x103/0x4b0
[95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0
[95553.717034] ? __do_sys_fsconfig+0x3d9/0x660
[95553.717548] ? __x64_sys_fsconfig+0x20/0x40
[95553.717957] ? x64_sys_call+0x21ee/0x26a0
[95553.718360] ? do_syscall_64+0xb8/0x670
[95553.718734] ? __x64_sys_fsconfig+0x20/0x40
[95553.719141] ? x64_sys_call+0x21ee/0x26a0
[95553.719545] ? do_syscall_64+0xb8/0x670
[95553.719922] ? x64_sys_call+0x1405/0x26a0
[95553.720317] ? do_syscall_64+0xb8/0x670
[95553.720702] ? __x64_sys_close+0x3e/0x90
[95553.721080] ? x64_sys_call+0x1b5e/0x26a0
[95553.721478] ? do_syscall_64+0xb8/0x670
[95553.721841] ? irqentry_exit+0x43/0x50
[95553.722211] ? exc_page_fault+0x90/0x1b0
[95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[95553.723166] RIP: 0033:0x72ee774f3afe
[95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48
[95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af
[95553.725892] RAX: ffffffffffffffda RBX:
---truncated--- |
| LogStare Collector contains an incorrect authorization vulnerability in UserRegistration. If exploited, a non-administrative user may create a new user account by sending a crafted HTTP request. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: verify the expected usb_endpoints are present
The bug arises when a USB device claims to be an ATH9K but doesn't
have the expected endpoints. (In this case there was an interrupt
endpoint where the driver expected a bulk endpoint.) The kernel
needs to be able to handle such devices without getting an internal error.
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493
Modules linked in:
CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Workqueue: events request_firmware_work_func
RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493
Call Trace:
ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline]
ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019
ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline]
ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242
request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097
process_one_work+0x9af/0x1600 kernel/workqueue.c:2279
worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425
kthread+0x3b4/0x4a0 kernel/kthread.c:313
ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
slimbus: qcom-ngd: cleanup in probe error path
Add proper error path in probe() to cleanup resources previously
acquired/allocated to fix warnings visible during probe deferral:
notifier callback qcom_slim_ngd_ssr_notify already registered
WARNING: CPU: 6 PID: 70 at kernel/notifier.c:28 notifier_chain_register+0x5c/0x90
Modules linked in:
CPU: 6 PID: 70 Comm: kworker/u16:1 Not tainted 6.0.0-rc3-next-20220830 #380
Call trace:
notifier_chain_register+0x5c/0x90
srcu_notifier_chain_register+0x44/0x90
qcom_register_ssr_notifier+0x38/0x4c
qcom_slim_ngd_ctrl_probe+0xd8/0x400
platform_probe+0x6c/0xe0
really_probe+0xbc/0x2d4
__driver_probe_device+0x78/0xe0
driver_probe_device+0x3c/0x12c
__device_attach_driver+0xb8/0x120
bus_for_each_drv+0x78/0xd0
__device_attach+0xa8/0x1c0
device_initial_probe+0x18/0x24
bus_probe_device+0xa0/0xac
deferred_probe_work_func+0x88/0xc0
process_one_work+0x1d4/0x320
worker_thread+0x2cc/0x44c
kthread+0x110/0x114
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
md: Replace snprintf with scnprintf
Current code produces a warning as shown below when total characters
in the constituent block device names plus the slashes exceeds 200.
snprintf() returns the number of characters generated from the given
input, which could cause the expression “200 – len” to wrap around
to a large positive number. Fix this by using scnprintf() instead,
which returns the actual number of characters written into the buffer.
[ 1513.267938] ------------[ cut here ]------------
[ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510
[ 1513.267944] Modules linked in: <snip>
[ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu
[ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022
[ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510
<-snip->
[ 1513.267982] Call Trace:
[ 1513.267986] snprintf+0x45/0x70
[ 1513.267990] ? disk_name+0x71/0xa0
[ 1513.267993] dump_zones+0x114/0x240 [raid0]
[ 1513.267996] ? _cond_resched+0x19/0x40
[ 1513.267998] raid0_run+0x19e/0x270 [raid0]
[ 1513.268000] md_run+0x5e0/0xc50
[ 1513.268003] ? security_capable+0x3f/0x60
[ 1513.268005] do_md_run+0x19/0x110
[ 1513.268006] md_ioctl+0x195e/0x1f90
[ 1513.268007] blkdev_ioctl+0x91f/0x9f0
[ 1513.268010] block_ioctl+0x3d/0x50
[ 1513.268012] do_vfs_ioctl+0xa9/0x640
[ 1513.268014] ? __fput+0x162/0x260
[ 1513.268016] ksys_ioctl+0x75/0x80
[ 1513.268017] __x64_sys_ioctl+0x1a/0x20
[ 1513.268019] do_syscall_64+0x5e/0x200
[ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix extent map use-after-free when handling missing device in read_one_chunk
Store the error code before freeing the extent_map. Though it's
reference counted structure, in that function it's the first and last
allocation so this would lead to a potential use-after-free.
The error can happen eg. when chunk is stored on a missing device and
the degraded mount option is missing.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721 |