| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: validate skb length for unknown CC opcode
In hci_cmd_complete_evt(), if the command complete event has an unknown
opcode, we assume the first byte of the remaining skb->data contains the
return status. However, parameter data has previously been pulled in
hci_event_func(), which may leave the skb empty. If so, using skb->data[0]
for the return status uses un-init memory.
The fix is to check skb->len before using skb->data. |
| In the Linux kernel, the following vulnerability has been resolved:
media: videobuf2: forbid remove_bufs when legacy fileio is active
vb2_ioctl_remove_bufs() call manipulates queue internal buffer list,
potentially overwriting some pointers used by the legacy fileio access
mode. Forbid that ioctl when fileio is active to protect internal queue
state between subsequent read/write calls. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement settime64 with -EOPNOTSUPP
ptp_clock_settime() assumes every ptp_clock has implemented settime64().
Stub it with -EOPNOTSUPP to prevent a NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix OOB access in parse_adv_monitor_pattern()
In the parse_adv_monitor_pattern() function, the value of
the 'length' variable is currently limited to HCI_MAX_EXT_AD_LENGTH(251).
The size of the 'value' array in the mgmt_adv_pattern structure is 31.
If the value of 'pattern[i].length' is set in the user space
and exceeds 31, the 'patterns[i].value' array can be accessed
out of bound when copied.
Increasing the size of the 'value' array in
the 'mgmt_adv_pattern' structure will break the userspace.
Considering this, and to avoid OOB access revert the limits for 'offset'
and 'length' back to the value of HCI_MAX_AD_LENGTH.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
fscrypt: fix left shift underflow when inode->i_blkbits > PAGE_SHIFT
When simulating an nvme device on qemu with both logical_block_size and
physical_block_size set to 8 KiB, an error trace appears during
partition table reading at boot time. The issue is caused by
inode->i_blkbits being larger than PAGE_SHIFT, which leads to a left
shift of -1 and triggering a UBSAN warning.
[ 2.697306] ------------[ cut here ]------------
[ 2.697309] UBSAN: shift-out-of-bounds in fs/crypto/inline_crypt.c:336:37
[ 2.697311] shift exponent -1 is negative
[ 2.697315] CPU: 3 UID: 0 PID: 274 Comm: (udev-worker) Not tainted 6.18.0-rc2+ #34 PREEMPT(voluntary)
[ 2.697317] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 2.697320] Call Trace:
[ 2.697324] <TASK>
[ 2.697325] dump_stack_lvl+0x76/0xa0
[ 2.697340] dump_stack+0x10/0x20
[ 2.697342] __ubsan_handle_shift_out_of_bounds+0x1e3/0x390
[ 2.697351] bh_get_inode_and_lblk_num.cold+0x12/0x94
[ 2.697359] fscrypt_set_bio_crypt_ctx_bh+0x44/0x90
[ 2.697365] submit_bh_wbc+0xb6/0x190
[ 2.697370] block_read_full_folio+0x194/0x270
[ 2.697371] ? __pfx_blkdev_get_block+0x10/0x10
[ 2.697375] ? __pfx_blkdev_read_folio+0x10/0x10
[ 2.697377] blkdev_read_folio+0x18/0x30
[ 2.697379] filemap_read_folio+0x40/0xe0
[ 2.697382] filemap_get_pages+0x5ef/0x7a0
[ 2.697385] ? mmap_region+0x63/0xd0
[ 2.697389] filemap_read+0x11d/0x520
[ 2.697392] blkdev_read_iter+0x7c/0x180
[ 2.697393] vfs_read+0x261/0x390
[ 2.697397] ksys_read+0x71/0xf0
[ 2.697398] __x64_sys_read+0x19/0x30
[ 2.697399] x64_sys_call+0x1e88/0x26a0
[ 2.697405] do_syscall_64+0x80/0x670
[ 2.697410] ? __x64_sys_newfstat+0x15/0x20
[ 2.697414] ? x64_sys_call+0x204a/0x26a0
[ 2.697415] ? do_syscall_64+0xb8/0x670
[ 2.697417] ? irqentry_exit_to_user_mode+0x2e/0x2a0
[ 2.697420] ? irqentry_exit+0x43/0x50
[ 2.697421] ? exc_page_fault+0x90/0x1b0
[ 2.697422] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 2.697425] RIP: 0033:0x75054cba4a06
[ 2.697426] Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
[ 2.697427] RSP: 002b:00007fff973723a0 EFLAGS: 00000202 ORIG_RAX: 0000000000000000
[ 2.697430] RAX: ffffffffffffffda RBX: 00005ea9a2c02760 RCX: 000075054cba4a06
[ 2.697432] RDX: 0000000000002000 RSI: 000075054c190000 RDI: 000000000000001b
[ 2.697433] RBP: 00007fff973723c0 R08: 0000000000000000 R09: 0000000000000000
[ 2.697434] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
[ 2.697434] R13: 00005ea9a2c027c0 R14: 00005ea9a2be5608 R15: 00005ea9a2be55f0
[ 2.697436] </TASK>
[ 2.697436] ---[ end trace ]---
This situation can happen for block devices because when
CONFIG_TRANSPARENT_HUGEPAGE is enabled, the maximum logical_block_size
is 64 KiB. set_init_blocksize() then sets the block device
inode->i_blkbits to 13, which is within this limit.
File I/O does not trigger this problem because for filesystems that do
not support the FS_LBS feature, sb_set_blocksize() prevents
sb->s_blocksize_bits from being larger than PAGE_SHIFT. During inode
allocation, alloc_inode()->inode_init_always() assigns inode->i_blkbits
from sb->s_blocksize_bits. Currently, only xfs_fs_type has the FS_LBS
flag, and since xfs I/O paths do not reach submit_bh_wbc(), it does not
hit the left-shift underflow issue.
[EB: use folio_pos() and consolidate the two shifts by i_blkbits] |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: fix received length check in big packets
Since commit 4959aebba8c0 ("virtio-net: use mtu size as buffer length
for big packets"), when guest gso is off, the allocated size for big
packets is not MAX_SKB_FRAGS * PAGE_SIZE anymore but depends on
negotiated MTU. The number of allocated frags for big packets is stored
in vi->big_packets_num_skbfrags.
Because the host announced buffer length can be malicious (e.g. the host
vhost_net driver's get_rx_bufs is modified to announce incorrect
length), we need a check in virtio_net receive path. Currently, the
check is not adapted to the new change which can lead to NULL page
pointer dereference in the below while loop when receiving length that
is larger than the allocated one.
This commit fixes the received length check corresponding to the new
change. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix regbuf vector size truncation
There is a report of io_estimate_bvec_size() truncating the calculated
number of segments that leads to corruption issues. Check it doesn't
overflow "int"s used later. Rough but simple, can be improved on top. |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: fix use-after-free due to MST port state bypass
syzbot reported[1] a use-after-free when deleting an expired fdb. It is
due to a race condition between learning still happening and a port being
deleted, after all its fdbs have been flushed. The port's state has been
toggled to disabled so no learning should happen at that time, but if we
have MST enabled, it will bypass the port's state, that together with VLAN
filtering disabled can lead to fdb learning at a time when it shouldn't
happen while the port is being deleted. VLAN filtering must be disabled
because we flush the port VLANs when it's being deleted which will stop
learning. This fix adds a check for the port's vlan group which is
initialized to NULL when the port is getting deleted, that avoids the port
state bypass. When MST is enabled there would be a minimal new overhead
in the fast-path because the port's vlan group pointer is cache-hot.
[1] https://syzkaller.appspot.com/bug?extid=dd280197f0f7ab3917be |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: prevent possible shift-out-of-bounds in sctp_transport_update_rto
syzbot reported a possible shift-out-of-bounds [1]
Blamed commit added rto_alpha_max and rto_beta_max set to 1000.
It is unclear if some sctp users are setting very large rto_alpha
and/or rto_beta.
In order to prevent user regression, perform the test at run time.
Also add READ_ONCE() annotations as sysctl values can change under us.
[1]
UBSAN: shift-out-of-bounds in net/sctp/transport.c:509:41
shift exponent 64 is too large for 32-bit type 'unsigned int'
CPU: 0 UID: 0 PID: 16704 Comm: syz.2.2320 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:233 [inline]
__ubsan_handle_shift_out_of_bounds+0x27f/0x420 lib/ubsan.c:494
sctp_transport_update_rto.cold+0x1c/0x34b net/sctp/transport.c:509
sctp_check_transmitted+0x11c4/0x1c30 net/sctp/outqueue.c:1502
sctp_outq_sack+0x4ef/0x1b20 net/sctp/outqueue.c:1338
sctp_cmd_process_sack net/sctp/sm_sideeffect.c:840 [inline]
sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1372 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: act_connmark: initialize struct tc_ife to fix kernel leak
In tcf_connmark_dump(), the variable 'opt' was partially initialized using a
designatied initializer. While the padding bytes are reamined
uninitialized. nla_put() copies the entire structure into a
netlink message, these uninitialized bytes leaked to userspace.
Initialize the structure with memset before assigning its fields
to ensure all members and padding are cleared prior to beign copied. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/secretmem: fix use-after-free race in fault handler
When a page fault occurs in a secret memory file created with
`memfd_secret(2)`, the kernel will allocate a new folio for it, mark the
underlying page as not-present in the direct map, and add it to the file
mapping.
If two tasks cause a fault in the same page concurrently, both could end
up allocating a folio and removing the page from the direct map, but only
one would succeed in adding the folio to the file mapping. The task that
failed undoes the effects of its attempt by (a) freeing the folio again
and (b) putting the page back into the direct map. However, by doing
these two operations in this order, the page becomes available to the
allocator again before it is placed back in the direct mapping.
If another task attempts to allocate the page between (a) and (b), and the
kernel tries to access it via the direct map, it would result in a
supervisor not-present page fault.
Fix the ordering to restore the direct map before the folio is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: cancel mesh send timer when hdev removed
mesh_send_done timer is not canceled when hdev is removed, which causes
crash if the timer triggers after hdev is gone.
Cancel the timer when MGMT removes the hdev, like other MGMT timers.
Should fix the BUG: sporadically seen by BlueZ test bot
(in "Mesh - Send cancel - 1" test).
Log:
------
BUG: KASAN: slab-use-after-free in run_timer_softirq+0x76b/0x7d0
...
Freed by task 36:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x43/0x70
kfree+0x103/0x500
device_release+0x9a/0x210
kobject_put+0x100/0x1e0
vhci_release+0x18b/0x240
------ |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: 6lowpan: reset link-local header on ipv6 recv path
Bluetooth 6lowpan.c netdev has header_ops, so it must set link-local
header for RX skb, otherwise things crash, eg. with AF_PACKET SOCK_RAW
Add missing skb_reset_mac_header() for uncompressed ipv6 RX path.
For the compressed one, it is done in lowpan_header_decompress().
Log: (BlueZ 6lowpan-tester Client Recv Raw - Success)
------
kernel BUG at net/core/skbuff.c:212!
Call Trace:
<IRQ>
...
packet_rcv (net/packet/af_packet.c:2152)
...
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
netif_rx (net/core/dev.c:5648)
chan_recv_cb (net/bluetooth/6lowpan.c:294 net/bluetooth/6lowpan.c:359)
------ |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: avoid data corruption on cq descriptor number
Since commit 30f241fcf52a ("xsk: Fix immature cq descriptor
production"), the descriptor number is stored in skb control block and
xsk_cq_submit_addr_locked() relies on it to put the umem addrs onto
pool's completion queue.
skb control block shouldn't be used for this purpose as after transmit
xsk doesn't have control over it and other subsystems could use it. This
leads to the following kernel panic due to a NULL pointer dereference.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 1 PID: 927 Comm: p4xsk.bin Not tainted 6.16.12+deb14-cloud-amd64 #1 PREEMPT(lazy) Debian 6.16.12-1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:xsk_destruct_skb+0xd0/0x180
[...]
Call Trace:
<IRQ>
? napi_complete_done+0x7a/0x1a0
ip_rcv_core+0x1bb/0x340
ip_rcv+0x30/0x1f0
__netif_receive_skb_one_core+0x85/0xa0
process_backlog+0x87/0x130
__napi_poll+0x28/0x180
net_rx_action+0x339/0x420
handle_softirqs+0xdc/0x320
? handle_edge_irq+0x90/0x1e0
do_softirq.part.0+0x3b/0x60
</IRQ>
<TASK>
__local_bh_enable_ip+0x60/0x70
__dev_direct_xmit+0x14e/0x1f0
__xsk_generic_xmit+0x482/0xb70
? __remove_hrtimer+0x41/0xa0
? __xsk_generic_xmit+0x51/0xb70
? _raw_spin_unlock_irqrestore+0xe/0x40
xsk_sendmsg+0xda/0x1c0
__sys_sendto+0x1ee/0x200
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x84/0x2f0
? __pfx_pollwake+0x10/0x10
? __rseq_handle_notify_resume+0xad/0x4c0
? restore_fpregs_from_fpstate+0x3c/0x90
? switch_fpu_return+0x5b/0xe0
? do_syscall_64+0x204/0x2f0
? do_syscall_64+0x204/0x2f0
? do_syscall_64+0x204/0x2f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
[...]
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: 0x1c000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
Instead use the skb destructor_arg pointer along with pointer tagging.
As pointers are always aligned to 8B, use the bottom bit to indicate
whether this a single address or an allocated struct containing several
addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netsec: fix error handling in netsec_register_mdio()
If phy_device_register() fails, phy_device_free() need be called to
put refcount, so memory of phy device and device name can be freed
in callback function.
If get_phy_device() fails, mdiobus_unregister() need be called,
or it will cause warning in mdiobus_free() and kobject is leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: amba-pl011: avoid SBSA UART accessing DMACR register
Chapter "B Generic UART" in "ARM Server Base System Architecture" [1]
documentation describes a generic UART interface. Such generic UART
does not support DMA. In current code, sbsa_uart_pops and
amba_pl011_pops share the same stop_rx operation, which will invoke
pl011_dma_rx_stop, leading to an access of the DMACR register. This
commit adds a using_rx_dma check in pl011_dma_rx_stop to avoid the
access to DMACR register for SBSA UARTs which does not support DMA.
When the kernel enables DMA engine with "CONFIG_DMA_ENGINE=y", Linux
SBSA PL011 driver will access PL011 DMACR register in some functions.
For most real SBSA Pl011 hardware implementations, the DMACR write
behaviour will be ignored. So these DMACR operations will not cause
obvious problems. But for some virtual SBSA PL011 hardware, like Xen
virtual SBSA PL011 (vpl011) device, the behaviour might be different.
Xen vpl011 emulation will inject a data abort to guest, when guest is
accessing an unimplemented UART register. As Xen VPL011 is SBSA
compatible, it will not implement DMACR register. So when Linux SBSA
PL011 driver access DMACR register, it will get an unhandled data abort
fault and the application will get a segmentation fault:
Unhandled fault at 0xffffffc00944d048
Mem abort info:
ESR = 0x96000000
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x00: ttbr address size fault
Data abort info:
ISV = 0, ISS = 0x00000000
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000020e2e000
[ffffffc00944d048] pgd=100000003ffff803, p4d=100000003ffff803, pud=100000003ffff803, pmd=100000003fffa803, pte=006800009c090f13
Internal error: ttbr address size fault: 96000000 [#1] PREEMPT SMP
...
Call trace:
pl011_stop_rx+0x70/0x80
tty_port_shutdown+0x7c/0xb4
tty_port_close+0x60/0xcc
uart_close+0x34/0x8c
tty_release+0x144/0x4c0
__fput+0x78/0x220
____fput+0x1c/0x30
task_work_run+0x88/0xc0
do_notify_resume+0x8d0/0x123c
el0_svc+0xa8/0xc0
el0t_64_sync_handler+0xa4/0x130
el0t_64_sync+0x1a0/0x1a4
Code: b9000083 b901f001 794038a0 8b000042 (b9000041)
---[ end trace 83dd93df15c3216f ]---
note: bootlogd[132] exited with preempt_count 1
/etc/rcS.d/S07bootlogd: line 47: 132 Segmentation fault start-stop-daemon
This has been discussed in the Xen community, and we think it should fix
this in Linux. See [2] for more information.
[1] https://developer.arm.com/documentation/den0094/c/?lang=en
[2] https://lists.xenproject.org/archives/html/xen-devel/2022-11/msg00543.html |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: meson-gx: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
it will lead two issues:
1. The memory that allocated in mmc_alloc_host() is leaked.
2. In the remove() path, mmc_remove_host() will be called to
delete device, but it's not added yet, it will lead a kernel
crash because of null-ptr-deref in device_del().
Fix this by checking the return value and goto error path which
will call mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr()
If the number of pages from the userptr BO differs from the SG BO then the
allocated memory for the SG table doesn't get freed before returning
-EINVAL, which may lead to a memory leak in some error paths. Fix this by
checking the number of pages before allocating memory for the SG table. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/powerplay/psm: Fix memory leak in power state init
Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power
state init") made the power state init function return early in case of
failure to get an entry from the powerplay table, but it missed to clean up
the allocated memory for the current power state before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Fix memory leak in rsi_coex_attach()
The coex_cb needs to be freed when rsi_create_kthread() failed in
rsi_coex_attach(). |