| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: Clear nfc_target before being used
Fix a slab-out-of-bounds read that occurs in nla_put() called from
nfc_genl_send_target() when target->sensb_res_len, which is duplicated
from an nfc_target in pn533, is too large as the nfc_target is not
properly initialized and retains garbage values. Clear nfc_targets with
memset() before they are used.
Found by a modified version of syzkaller.
BUG: KASAN: slab-out-of-bounds in nla_put
Call Trace:
memcpy
nla_put
nfc_genl_dump_targets
genl_lock_dumpit
netlink_dump
__netlink_dump_start
genl_family_rcv_msg_dumpit
genl_rcv_msg
netlink_rcv_skb
genl_rcv
netlink_unicast
netlink_sendmsg
sock_sendmsg
____sys_sendmsg
___sys_sendmsg
__sys_sendmsg
do_syscall_64 |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: qcom: fix memory leak in error path
If for some reason the speedbin length is incorrect, then there is a
memory leak in the error path because we never free the speedbin buffer.
This commit fixes the error path to always free the speedbin buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
uio: uio_dmem_genirq: Fix missing unlock in irq configuration
Commit b74351287d4b ("uio: fix a sleep-in-atomic-context bug in
uio_dmem_genirq_irqcontrol()") started calling disable_irq() without
holding the spinlock because it can sleep. However, that fix introduced
another bug: if interrupt is already disabled and a new disable request
comes in, then the spinlock is not unlocked:
root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0
root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0
root@localhost:~# [ 14.851538] BUG: scheduling while atomic: bash/223/0x00000002
[ 14.851991] Modules linked in: uio_dmem_genirq uio myfpga(OE) bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper drm snd_pcm ppdev joydev psmouse snd_timer snd e1000fb_sys_fops syscopyarea parport sysfillrect soundcore sysimgblt input_leds pcspkr i2c_piix4 serio_raw floppy evbug qemu_fw_cfg mac_hid pata_acpi ip_tables x_tables autofs4 [last unloaded: parport_pc]
[ 14.854206] CPU: 0 PID: 223 Comm: bash Tainted: G OE 6.0.0-rc7 #21
[ 14.854786] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 14.855664] Call Trace:
[ 14.855861] <TASK>
[ 14.856025] dump_stack_lvl+0x4d/0x67
[ 14.856325] dump_stack+0x14/0x1a
[ 14.856583] __schedule_bug.cold+0x4b/0x5c
[ 14.856915] __schedule+0xe81/0x13d0
[ 14.857199] ? idr_find+0x13/0x20
[ 14.857456] ? get_work_pool+0x2d/0x50
[ 14.857756] ? __flush_work+0x233/0x280
[ 14.858068] ? __schedule+0xa95/0x13d0
[ 14.858307] ? idr_find+0x13/0x20
[ 14.858519] ? get_work_pool+0x2d/0x50
[ 14.858798] schedule+0x6c/0x100
[ 14.859009] schedule_hrtimeout_range_clock+0xff/0x110
[ 14.859335] ? tty_write_room+0x1f/0x30
[ 14.859598] ? n_tty_poll+0x1ec/0x220
[ 14.859830] ? tty_ldisc_deref+0x1a/0x20
[ 14.860090] schedule_hrtimeout_range+0x17/0x20
[ 14.860373] do_select+0x596/0x840
[ 14.860627] ? __kernel_text_address+0x16/0x50
[ 14.860954] ? poll_freewait+0xb0/0xb0
[ 14.861235] ? poll_freewait+0xb0/0xb0
[ 14.861517] ? rpm_resume+0x49d/0x780
[ 14.861798] ? common_interrupt+0x59/0xa0
[ 14.862127] ? asm_common_interrupt+0x2b/0x40
[ 14.862511] ? __uart_start.isra.0+0x61/0x70
[ 14.862902] ? __check_object_size+0x61/0x280
[ 14.863255] core_sys_select+0x1c6/0x400
[ 14.863575] ? vfs_write+0x1c9/0x3d0
[ 14.863853] ? vfs_write+0x1c9/0x3d0
[ 14.864121] ? _copy_from_user+0x45/0x70
[ 14.864526] do_pselect.constprop.0+0xb3/0xf0
[ 14.864893] ? do_syscall_64+0x6d/0x90
[ 14.865228] ? do_syscall_64+0x6d/0x90
[ 14.865556] __x64_sys_pselect6+0x76/0xa0
[ 14.865906] do_syscall_64+0x60/0x90
[ 14.866214] ? syscall_exit_to_user_mode+0x2a/0x50
[ 14.866640] ? do_syscall_64+0x6d/0x90
[ 14.866972] ? do_syscall_64+0x6d/0x90
[ 14.867286] ? do_syscall_64+0x6d/0x90
[ 14.867626] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...] stripped
[ 14.872959] </TASK>
('myfpga' is a simple 'uio_dmem_genirq' driver I wrote to test this)
The implementation of "uio_dmem_genirq" was based on "uio_pdrv_genirq" and
it is used in a similar manner to the "uio_pdrv_genirq" driver with respect
to interrupt configuration and handling. At the time "uio_dmem_genirq" was
introduced, both had the same implementation of the 'uio_info' handlers
irqcontrol() and handler(). Then commit 34cb27528398 ("UIO: Fix concurrency
issue"), which was only applied to "uio_pdrv_genirq", ended up making them
a little different. That commit, among other things, changed disable_irq()
to disable_irq_nosync() in the implementation of irqcontrol(). The
motivation there was to avoid a deadlock between irqcontrol() and
handler(), since it added a spinlock in the irq handler, and disable_irq()
waits for the completion of the irq handler.
By changing disable_irq() to disable_irq_nosync() in irqcontrol(), we also
avoid the sleeping-whil
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: eeprom: fix null-deref on genl_info in dump
The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on
genl_info in dump") is also needed for ethtool eeprom. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_typec: zero out stale pointers
`cros_typec_get_switch_handles` allocates four pointers when obtaining
type-c switch handles. These pointers are all freed if failing to obtain
any of them; therefore, pointers in `port` become stale. The stale
pointers eventually cause use-after-free or double free in later code
paths. Zeroing out all pointer fields after freeing to eliminate these
stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_copy_file_range()
If the file is used by swap, before return -EOPNOTSUPP, should
free the xid, otherwise, the xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix reference state management for synchronous callbacks
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller). |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: Make port I/O string accessors actually work
Fix port I/O string accessors such as `insb', `outsb', etc. which use
the physical PCI port I/O address rather than the corresponding memory
mapping to get at the requested location, which in turn breaks at least
accesses made by our parport driver to a PCIe parallel port such as:
PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20
parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP]
causing a memory access fault:
Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008
Oops [#1]
Modules linked in:
CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23
Hardware name: SiFive HiFive Unmatched A00 (DT)
epc : parport_pc_fifo_write_block_pio+0x266/0x416
ra : parport_pc_fifo_write_block_pio+0xb4/0x416
epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60
gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000
t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0
s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000
a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb
a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000
s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50
s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000
s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000
s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930
t5 : 0000000000001000 t6 : 0000000000040000
status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f
[<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200
[<ffffffff8053bbc0>] parport_write+0x46/0xf8
[<ffffffff8050530e>] lp_write+0x158/0x2d2
[<ffffffff80185716>] vfs_write+0x8e/0x2c2
[<ffffffff80185a74>] ksys_write+0x52/0xc2
[<ffffffff80185af2>] sys_write+0xe/0x16
[<ffffffff80003770>] ret_from_syscall+0x0/0x2
---[ end trace 0000000000000000 ]---
For simplicity address the problem by adding PCI_IOBASE to the physical
address requested in the respective wrapper macros only, observing that
the raw accessors such as `__insb', `__outsb', etc. are not supposed to
be used other than by said macros. Remove the cast to `long' that is no
longer needed on `addr' now that it is used as an offset from PCI_IOBASE
and add parentheses around `addr' needed for predictable evaluation in
macro expansion. No need to make said adjustments in separate changes
given that current code is gravely broken and does not ever work. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe
pm_runtime_get_sync() will increment pm usage counter.
Forgetting to putting operation will result in reference leak.
Add missing pm_runtime_put_sync in some error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix system hang caused by cpu-clock usage
cpu-clock usage by the async-profiler tool can trigger a system hang,
which got bisected back to the following commit by Octavia Togami:
18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue
The root cause of the hang is that cpu-clock is a special type of SW
event which relies on hrtimers. The __perf_event_overflow() callback
is invoked from the hrtimer handler for cpu-clock events, and
__perf_event_overflow() tries to call cpu_clock_event_stop()
to stop the event, which calls htimer_cancel() to cancel the hrtimer.
But that's a recursion into the hrtimer code from a hrtimer handler,
which (unsurprisingly) deadlocks.
To fix this bug, use hrtimer_try_to_cancel() instead, and set
the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer()
to stop the event once it sees the PERF_HES_STOPPED flag.
[ mingo: Fixed the comments and improved the changelog. ] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Zeroing allocated object from slab in bpf memory allocator
Currently the freed element in bpf memory allocator may be immediately
reused, for htab map the reuse will reinitialize special fields in map
value (e.g., bpf_spin_lock), but lookup procedure may still access
these special fields, and it may lead to hard-lockup as shown below:
NMI backtrace for cpu 16
CPU: 16 PID: 2574 Comm: htab.bin Tainted: G L 6.1.0+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:queued_spin_lock_slowpath+0x283/0x2c0
......
Call Trace:
<TASK>
copy_map_value_locked+0xb7/0x170
bpf_map_copy_value+0x113/0x3c0
__sys_bpf+0x1c67/0x2780
__x64_sys_bpf+0x1c/0x20
do_syscall_64+0x30/0x60
entry_SYSCALL_64_after_hwframe+0x46/0xb0
......
</TASK>
For htab map, just like the preallocated case, these is no need to
initialize these special fields in map value again once these fields
have been initialized. For preallocated htab map, these fields are
initialized through __GFP_ZERO in bpf_map_area_alloc(), so do the
similar thing for non-preallocated htab in bpf memory allocator. And
there is no need to use __GFP_ZERO for per-cpu bpf memory allocator,
because __alloc_percpu_gfp() does it implicitly. |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: Fix uninitialized number of lanes
It is not possible to set the number of lanes when setting link modes
using the legacy IOCTL ethtool interface. Since 'struct
ethtool_link_ksettings' is not initialized in this path, drivers receive
an uninitialized number of lanes in 'struct
ethtool_link_ksettings::lanes'.
When this information is later queried from drivers, it results in the
ethtool code making decisions based on uninitialized memory, leading to
the following KMSAN splat [1]. In practice, this most likely only
happens with the tun driver that simply returns whatever it got in the
set operation.
As far as I can tell, this uninitialized memory is not leaked to user
space thanks to the 'ethtool_ops->cap_link_lanes_supported' check in
linkmodes_prepare_data().
Fix by initializing the structure in the IOCTL path. Did not find any
more call sites that pass an uninitialized structure when calling
'ethtool_ops::set_link_ksettings()'.
[1]
BUG: KMSAN: uninit-value in ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline]
BUG: KMSAN: uninit-value in ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333
ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline]
ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333
ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640
genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0xa24/0xe40 net/socket.c:2501
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555
__sys_sendmsg net/socket.c:2584 [inline]
__do_sys_sendmsg net/socket.c:2593 [inline]
__se_sys_sendmsg net/socket.c:2591 [inline]
__x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
tun_get_link_ksettings+0x37/0x60 drivers/net/tun.c:3544
__ethtool_get_link_ksettings+0x17b/0x260 net/ethtool/ioctl.c:441
ethnl_set_linkmodes+0xee/0x19d0 net/ethtool/linkmodes.c:327
ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640
genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0xa24/0xe40 net/socket.c:2501
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555
__sys_sendmsg net/socket.c:2584 [inline]
__do_sys_sendmsg net/socket.c:2593 [inline]
__se_sys_sendmsg net/socket.c:2591 [inline]
__x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
tun_set_link_ksettings+0x37/0x60 drivers/net/tun.c:3553
ethtool_set_link_ksettings+0x600/0x690 net/ethtool/ioctl.c:609
__dev_ethtool net/ethtool/ioctl.c:3024 [inline]
dev_ethtool+0x1db9/0x2a70 net/ethtool/ioctl.c:3078
dev_ioctl+0xb07/0x1270 net/core/dev_ioctl.c:524
sock_do_ioctl+0x295/0x540 net/socket.c:1213
sock_i
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: Fix out of bounds access in DCCP error handler
There was a previous attempt to fix an out-of-bounds access in the DCCP
error handlers, but that fix assumed that the error handlers only want
to access the first 8 bytes of the DCCP header. Actually, they also look
at the DCCP sequence number, which is stored beyond 8 bytes, so an
explicit pskb_may_pull() is required. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd-mbhc-v2: fix resource leaks on component remove
The MBHC resources must be released on component probe failure and
removal so can not be tied to the lifetime of the component device.
This is specifically needed to allow probe deferrals of the sound card
which otherwise fails when reprobing the codec component:
snd-sc8280xp sound: ASoC: failed to instantiate card -517
genirq: Flags mismatch irq 299. 00002001 (mbhc sw intr) vs. 00002001 (mbhc sw intr)
wcd938x_codec audio-codec: Failed to request mbhc interrupts -16
wcd938x_codec audio-codec: mbhc initialization failed
wcd938x_codec audio-codec: ASoC: error at snd_soc_component_probe on audio-codec: -16
snd-sc8280xp sound: ASoC: failed to instantiate card -16 |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix null-ptr-deref in raid10_sync_request
init_resync() inits mempool and sets conf->have_replacemnt at the beginning
of sync, close_sync() frees the mempool when sync is completed.
After [1] recovery might be skipped and init_resync() is called but
close_sync() is not. null-ptr-deref occurs with r10bio->dev[i].repl_bio.
The following is one way to reproduce the issue.
1) create a array, wait for resync to complete, mddev->recovery_cp is set
to MaxSector.
2) recovery is woken and it is skipped. conf->have_replacement is set to
0 in init_resync(). close_sync() not called.
3) some io errors and rdev A is set to WantReplacement.
4) a new device is added and set to A's replacement.
5) recovery is woken, A have replacement, but conf->have_replacemnt is
0. r10bio->dev[i].repl_bio will not be alloced and null-ptr-deref
occurs.
Fix it by not calling init_resync() if recovery skipped.
[1] commit 7e83ccbecd60 ("md/raid10: Allow skipping recovery when clean arrays are assembled") |
| In the Linux kernel, the following vulnerability has been resolved:
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the
string is not guaranteed to be NULL terminated when xdbc_trace() is called.
Reserve an extra byte, which will be zeroed automatically because 'buf' is
a static variable, in order to avoid troubles, should it happen. |
| In the Linux kernel, the following vulnerability has been resolved:
usb-storage: alauda: Fix uninit-value in alauda_check_media()
Syzbot got KMSAN to complain about access to an uninitialized value in
the alauda subdriver of usb-storage:
BUG: KMSAN: uninit-value in alauda_transport+0x462/0x57f0
drivers/usb/storage/alauda.c:1137
CPU: 0 PID: 12279 Comm: usb-storage Not tainted 5.3.0-rc7+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x191/0x1f0 lib/dump_stack.c:113
kmsan_report+0x13a/0x2b0 mm/kmsan/kmsan_report.c:108
__msan_warning+0x73/0xe0 mm/kmsan/kmsan_instr.c:250
alauda_check_media+0x344/0x3310 drivers/usb/storage/alauda.c:460
The problem is that alauda_check_media() doesn't verify that its USB
transfer succeeded before trying to use the received data. What
should happen if the transfer fails isn't entirely clear, but a
reasonably conservative approach is to pretend that no media is
present.
A similar problem exists in a usb_stor_dbg() call in
alauda_get_media_status(). In this case, when an error occurs the
call is redundant, because usb_stor_ctrl_transfer() already will print
a debugging message.
Finally, unrelated to the uninitialized memory access, is the fact
that alauda_check_media() performs DMA to a buffer on the stack.
Fortunately usb-storage provides a general purpose DMA-able buffer for
uses like this. We'll use it instead. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: Drop aux devices together with DP controller
Using devres to depopulate the aux bus made sure that upon a probe
deferral the EDP panel device would be destroyed and recreated upon next
attempt.
But the struct device which the devres is tied to is the DPUs
(drm_dev->dev), which may be happen after the DP controller is torn
down.
Indications of this can be seen in the commonly seen EDID-hexdump full
of zeros in the log, or the occasional/rare KASAN fault where the
panel's attempt to read the EDID information causes a use after free on
DP resources.
It's tempting to move the devres to the DP controller's struct device,
but the resources used by the device(s) on the aux bus are explicitly
torn down in the error path. The KASAN-reported use-after-free also
remains, as the DP aux "module" explicitly frees its devres-allocated
memory in this code path.
As such, explicitly depopulate the aux bus in the error path, and in the
component unbind path, to avoid these issues.
Patchwork: https://patchwork.freedesktop.org/patch/542163/ |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8186: Fix use-after-free in driver remove path
When devm runs function in the "remove" path for a device it runs them
in the reverse order. That means that if you have parts of your driver
that aren't using devm or are using "roll your own" devm w/
devm_add_action_or_reset() you need to keep that in mind.
The mt8186 audio driver didn't quite get this right. Specifically, in
mt8186_init_clock() it called mt8186_audsys_clk_register() and then
went on to call a bunch of other devm function. The caller of
mt8186_init_clock() used devm_add_action_or_reset() to call
mt8186_deinit_clock() but, because of the intervening devm functions,
the order was wrong.
Specifically at probe time, the order was:
1. mt8186_audsys_clk_register()
2. afe_priv->clk = devm_kcalloc(...)
3. afe_priv->clk[i] = devm_clk_get(...)
At remove time, the order (which should have been 3, 2, 1) was:
1. mt8186_audsys_clk_unregister()
3. Free all of afe_priv->clk[i]
2. Free afe_priv->clk
The above seemed to be causing a use-after-free. Luckily, it's easy to
fix this by simply using devm more correctly. Let's move the
devm_add_action_or_reset() to the right place. In addition to fixing
the use-after-free, code inspection shows that this fixes a leak
(missing call to mt8186_audsys_clk_unregister()) that would have
happened if any of the syscon_regmap_lookup_by_phandle() calls in
mt8186_init_clock() had failed. |