| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Fix IPIs usage in kfence_protect_page()
flush_tlb_kernel_range() may use IPIs to flush the TLBs of all the
cores, which triggers the following warning when the irqs are disabled:
[ 3.455330] WARNING: CPU: 1 PID: 0 at kernel/smp.c:815 smp_call_function_many_cond+0x452/0x520
[ 3.456647] Modules linked in:
[ 3.457218] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.12.0-rc7-00010-g91d3de7240b8 #1
[ 3.457416] Hardware name: QEMU QEMU Virtual Machine, BIOS
[ 3.457633] epc : smp_call_function_many_cond+0x452/0x520
[ 3.457736] ra : on_each_cpu_cond_mask+0x1e/0x30
[ 3.457786] epc : ffffffff800b669a ra : ffffffff800b67c2 sp : ff2000000000bb50
[ 3.457824] gp : ffffffff815212b8 tp : ff6000008014f080 t0 : 000000000000003f
[ 3.457859] t1 : ffffffff815221e0 t2 : 000000000000000f s0 : ff2000000000bc10
[ 3.457920] s1 : 0000000000000040 a0 : ffffffff815221e0 a1 : 0000000000000001
[ 3.457953] a2 : 0000000000010000 a3 : 0000000000000003 a4 : 0000000000000000
[ 3.458006] a5 : 0000000000000000 a6 : ffffffffffffffff a7 : 0000000000000000
[ 3.458042] s2 : ffffffff815223be s3 : 00fffffffffff000 s4 : ff600001ffe38fc0
[ 3.458076] s5 : ff600001ff950d00 s6 : 0000000200000120 s7 : 0000000000000001
[ 3.458109] s8 : 0000000000000001 s9 : ff60000080841ef0 s10: 0000000000000001
[ 3.458141] s11: ffffffff81524812 t3 : 0000000000000001 t4 : ff60000080092bc0
[ 3.458172] t5 : 0000000000000000 t6 : ff200000000236d0
[ 3.458203] status: 0000000200000100 badaddr: ffffffff800b669a cause: 0000000000000003
[ 3.458373] [<ffffffff800b669a>] smp_call_function_many_cond+0x452/0x520
[ 3.458593] [<ffffffff800b67c2>] on_each_cpu_cond_mask+0x1e/0x30
[ 3.458625] [<ffffffff8000e4ca>] __flush_tlb_range+0x118/0x1ca
[ 3.458656] [<ffffffff8000e6b2>] flush_tlb_kernel_range+0x1e/0x26
[ 3.458683] [<ffffffff801ea56a>] kfence_protect+0xc0/0xce
[ 3.458717] [<ffffffff801e9456>] kfence_guarded_free+0xc6/0x1c0
[ 3.458742] [<ffffffff801e9d6c>] __kfence_free+0x62/0xc6
[ 3.458764] [<ffffffff801c57d8>] kfree+0x106/0x32c
[ 3.458786] [<ffffffff80588cf2>] detach_buf_split+0x188/0x1a8
[ 3.458816] [<ffffffff8058708c>] virtqueue_get_buf_ctx+0xb6/0x1f6
[ 3.458839] [<ffffffff805871da>] virtqueue_get_buf+0xe/0x16
[ 3.458880] [<ffffffff80613d6a>] virtblk_done+0x5c/0xe2
[ 3.458908] [<ffffffff8058766e>] vring_interrupt+0x6a/0x74
[ 3.458930] [<ffffffff800747d8>] __handle_irq_event_percpu+0x7c/0xe2
[ 3.458956] [<ffffffff800748f0>] handle_irq_event+0x3c/0x86
[ 3.458978] [<ffffffff800786cc>] handle_simple_irq+0x9e/0xbe
[ 3.459004] [<ffffffff80073934>] generic_handle_domain_irq+0x1c/0x2a
[ 3.459027] [<ffffffff804bf87c>] imsic_handle_irq+0xba/0x120
[ 3.459056] [<ffffffff80073934>] generic_handle_domain_irq+0x1c/0x2a
[ 3.459080] [<ffffffff804bdb76>] riscv_intc_aia_irq+0x24/0x34
[ 3.459103] [<ffffffff809d0452>] handle_riscv_irq+0x2e/0x4c
[ 3.459133] [<ffffffff809d923e>] call_on_irq_stack+0x32/0x40
So only flush the local TLB and let the lazy kfence page fault handling
deal with the faults which could happen when a core has an old protected
pte version cached in its TLB. That leads to potential inaccuracies which
can be tolerated when using kfence. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: axp20x: AXP717: set ramp_delay
AXP717 datasheet says that regulator ramp delay is 15.625 us/step,
which is 10mV in our case.
Add a AXP_DESC_RANGES_DELAY macro and update AXP_DESC_RANGES macro to
expand to AXP_DESC_RANGES_DELAY with ramp_delay = 0
For DCDC4, steps is 100mv
Add a AXP_DESC_DELAY macro and update AXP_DESC macro to
expand to AXP_DESC_DELAY with ramp_delay = 0
This patch fix crashes when using CPU DVFS. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/fair: Fix NEXT_BUDDY
Adam reports that enabling NEXT_BUDDY insta triggers a WARN in
pick_next_entity().
Moving clear_buddies() up before the delayed dequeue bits ensures
no ->next buddy becomes delayed. Further ensure no new ->next buddy
ever starts as delayed. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: check v2_ext_offset/eid_cnt/ism_gid_cnt when receiving proposal msg
When receiving proposal msg in server, the fields v2_ext_offset/
eid_cnt/ism_gid_cnt in proposal msg are from the remote client
and can not be fully trusted. Especially the field v2_ext_offset,
once exceed the max value, there has the chance to access wrong
address, and crash may happen.
This patch checks the fields v2_ext_offset/eid_cnt/ism_gid_cnt
before using them. |
| In the Linux kernel, the following vulnerability has been resolved:
sched: fix warning in sched_setaffinity
Commit 8f9ea86fdf99b added some logic to sched_setaffinity that included
a WARN when a per-task affinity assignment races with a cpuset update.
Specifically, we can have a race where a cpuset update results in the
task affinity no longer being a subset of the cpuset. That's fine; we
have a fallback to instead use the cpuset mask. However, we have a WARN
set up that will trigger if the cpuset mask has no overlap at all with
the requested task affinity. This shouldn't be a warning condition; its
trivial to create this condition.
Reproduced the warning by the following setup:
- $PID inside a cpuset cgroup
- another thread repeatedly switching the cpuset cpus from 1-2 to just 1
- another thread repeatedly setting the $PID affinity (via taskset) to 2 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: don't fail inserts if duplicate has expired
nftables selftests fail:
run-tests.sh testcases/sets/0044interval_overlap_0
Expected: 0-2 . 0-3, got:
W: [FAILED] ./testcases/sets/0044interval_overlap_0: got 1
Insertion must ignore duplicate but expired entries.
Moreover, there is a strange asymmetry in nft_pipapo_activate:
It refetches the current element, whereas the other ->activate callbacks
(bitmap, hash, rhash, rbtree) use elem->priv.
Same for .remove: other set implementations take elem->priv,
nft_pipapo_remove fetches elem->priv, then does a relookup,
remove this.
I suspect this was the reason for the change that prompted the
removal of the expired check in pipapo_get() in the first place,
but skipping exired elements there makes no sense to me, this helper
is used for normal get requests, insertions (duplicate check)
and deactivate callback.
In first two cases expired elements must be skipped.
For ->deactivate(), this gets called for DELSETELEM, so it
seems to me that expired elements should be skipped as well, i.e.
delete request should fail with -ENOENT error. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: don't skip expired elements during walk
There is an asymmetry between commit/abort and preparation phase if the
following conditions are met:
1. set is a verdict map ("1.2.3.4 : jump foo")
2. timeouts are enabled
In this case, following sequence is problematic:
1. element E in set S refers to chain C
2. userspace requests removal of set S
3. kernel does a set walk to decrement chain->use count for all elements
from preparation phase
4. kernel does another set walk to remove elements from the commit phase
(or another walk to do a chain->use increment for all elements from
abort phase)
If E has already expired in 1), it will be ignored during list walk, so its use count
won't have been changed.
Then, when set is culled, ->destroy callback will zap the element via
nf_tables_set_elem_destroy(), but this function is only safe for
elements that have been deactivated earlier from the preparation phase:
lack of earlier deactivate removes the element but leaks the chain use
count, which results in a WARN splat when the chain gets removed later,
plus a leak of the nft_chain structure.
Update pipapo_get() not to skip expired elements, otherwise flush
command reports bogus ENOENT errors. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: adapt set backend to use GC transaction API
Use the GC transaction API to replace the old and buggy gc API and the
busy mark approach.
No set elements are removed from async garbage collection anymore,
instead the _DEAD bit is set on so the set element is not visible from
lookup path anymore. Async GC enqueues transaction work that might be
aborted and retried later.
rbtree and pipapo set backends does not set on the _DEAD bit from the
sync GC path since this runs in control plane path where mutex is held.
In this case, set elements are deactivated, removed and then released
via RCU callback, sync GC never fails. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix WARN in ivpu_ipc_send_receive_internal()
Move pm_runtime_set_active() to ivpu_pm_init() so when
ivpu_ipc_send_receive_internal() is executed before ivpu_pm_enable()
it already has correct runtime state, even if last resume was
not successful. |
| In Tenable Nessus versions prior to 10.8.5 on a Windows host, it was found that a non-administrative user could overwrite arbitrary local system files with log content at SYSTEM privilege. |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcba_usb: properly check endpoint type
Syzbot reported warning in usb_submit_urb() which is caused by wrong
endpoint type. We should check that in endpoint is actually present to
prevent this warning.
Found pipes are now saved to struct mcba_priv and code uses them
directly instead of making pipes in place.
Fail log:
| usb 5-1: BOGUS urb xfer, pipe 3 != type 1
| WARNING: CPU: 1 PID: 49 at drivers/usb/core/urb.c:502 usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
| Modules linked in:
| CPU: 1 PID: 49 Comm: kworker/1:2 Not tainted 5.17.0-rc6-syzkaller-00184-g38f80f42147f #0
| Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
| Workqueue: usb_hub_wq hub_event
| RIP: 0010:usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
| ...
| Call Trace:
| <TASK>
| mcba_usb_start drivers/net/can/usb/mcba_usb.c:662 [inline]
| mcba_usb_probe+0x8a3/0xc50 drivers/net/can/usb/mcba_usb.c:858
| usb_probe_interface+0x315/0x7f0 drivers/usb/core/driver.c:396
| call_driver_probe drivers/base/dd.c:517 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix the maximum minor value is blk_alloc_ext_minor()
ida_alloc_range(..., min, max, ...) returns values from min to max,
inclusive.
So, NR_EXT_DEVT is a valid idx returned by blk_alloc_ext_minor().
This is an issue because in device_add_disk(), this value is used in:
ddev->devt = MKDEV(disk->major, disk->first_minor);
and NR_EXT_DEVT is '(1 << MINORBITS)'.
So, should 'disk->first_minor' be NR_EXT_DEVT, it would overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio: use virtio_device_ready() in virtio_device_restore()
After waking up a suspended VM, the kernel prints the following trace
for virtio drivers which do not directly call virtio_device_ready() in
the .restore:
PM: suspend exit
irq 22: nobody cared (try booting with the "irqpoll" option)
Call Trace:
<IRQ>
dump_stack_lvl+0x38/0x49
dump_stack+0x10/0x12
__report_bad_irq+0x3a/0xaf
note_interrupt.cold+0xb/0x60
handle_irq_event+0x71/0x80
handle_fasteoi_irq+0x95/0x1e0
__common_interrupt+0x6b/0x110
common_interrupt+0x63/0xe0
asm_common_interrupt+0x1e/0x40
? __do_softirq+0x75/0x2f3
irq_exit_rcu+0x93/0xe0
sysvec_apic_timer_interrupt+0xac/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
arch_cpu_idle+0x12/0x20
default_idle_call+0x39/0xf0
do_idle+0x1b5/0x210
cpu_startup_entry+0x20/0x30
start_secondary+0xf3/0x100
secondary_startup_64_no_verify+0xc3/0xcb
</TASK>
handlers:
[<000000008f9bac49>] vp_interrupt
[<000000008f9bac49>] vp_interrupt
Disabling IRQ #22
This happens because we don't invoke .enable_cbs callback in
virtio_device_restore(). That callback is used by some transports
(e.g. virtio-pci) to enable interrupts.
Let's fix it, by calling virtio_device_ready() as we do in
virtio_dev_probe(). This function calls .enable_cts callback and sets
DRIVER_OK status bit.
This fix also avoids setting DRIVER_OK twice for those drivers that
call virtio_device_ready() in the .restore. |
| In the Linux kernel, the following vulnerability has been resolved:
net: preserve skb_end_offset() in skb_unclone_keeptruesize()
syzbot found another way to trigger the infamous WARN_ON_ONCE(delta < len)
in skb_try_coalesce() [1]
I was able to root cause the issue to kfence.
When kfence is in action, the following assertion is no longer true:
int size = xxxx;
void *ptr1 = kmalloc(size, gfp);
void *ptr2 = kmalloc(size, gfp);
if (ptr1 && ptr2)
ASSERT(ksize(ptr1) == ksize(ptr2));
We attempted to fix these issues in the blamed commits, but forgot
that TCP was possibly shifting data after skb_unclone_keeptruesize()
has been used, notably from tcp_retrans_try_collapse().
So we not only need to keep same skb->truesize value,
we also need to make sure TCP wont fill new tailroom
that pskb_expand_head() was able to get from a
addr = kmalloc(...) followed by ksize(addr)
Split skb_unclone_keeptruesize() into two parts:
1) Inline skb_unclone_keeptruesize() for the common case,
when skb is not cloned.
2) Out of line __skb_unclone_keeptruesize() for the 'slow path'.
WARNING: CPU: 1 PID: 6490 at net/core/skbuff.c:5295 skb_try_coalesce+0x1235/0x1560 net/core/skbuff.c:5295
Modules linked in:
CPU: 1 PID: 6490 Comm: syz-executor161 Not tainted 5.17.0-rc4-syzkaller-00229-g4f12b742eb2b #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:skb_try_coalesce+0x1235/0x1560 net/core/skbuff.c:5295
Code: bf 01 00 00 00 0f b7 c0 89 c6 89 44 24 20 e8 62 24 4e fa 8b 44 24 20 83 e8 01 0f 85 e5 f0 ff ff e9 87 f4 ff ff e8 cb 20 4e fa <0f> 0b e9 06 f9 ff ff e8 af b2 95 fa e9 69 f0 ff ff e8 95 b2 95 fa
RSP: 0018:ffffc900063af268 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 00000000ffffffd5 RCX: 0000000000000000
RDX: ffff88806fc05700 RSI: ffffffff872abd55 RDI: 0000000000000003
RBP: ffff88806e675500 R08: 00000000ffffffd5 R09: 0000000000000000
R10: ffffffff872ab659 R11: 0000000000000000 R12: ffff88806dd554e8
R13: ffff88806dd9bac0 R14: ffff88806dd9a2c0 R15: 0000000000000155
FS: 00007f18014f9700(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020002000 CR3: 000000006be7a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tcp_try_coalesce net/ipv4/tcp_input.c:4651 [inline]
tcp_try_coalesce+0x393/0x920 net/ipv4/tcp_input.c:4630
tcp_queue_rcv+0x8a/0x6e0 net/ipv4/tcp_input.c:4914
tcp_data_queue+0x11fd/0x4bb0 net/ipv4/tcp_input.c:5025
tcp_rcv_established+0x81e/0x1ff0 net/ipv4/tcp_input.c:5947
tcp_v4_do_rcv+0x65e/0x980 net/ipv4/tcp_ipv4.c:1719
sk_backlog_rcv include/net/sock.h:1037 [inline]
__release_sock+0x134/0x3b0 net/core/sock.c:2779
release_sock+0x54/0x1b0 net/core/sock.c:3311
sk_wait_data+0x177/0x450 net/core/sock.c:2821
tcp_recvmsg_locked+0xe28/0x1fd0 net/ipv4/tcp.c:2457
tcp_recvmsg+0x137/0x610 net/ipv4/tcp.c:2572
inet_recvmsg+0x11b/0x5e0 net/ipv4/af_inet.c:850
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_recvmsg net/socket.c:962 [inline]
____sys_recvmsg+0x2c4/0x600 net/socket.c:2632
___sys_recvmsg+0x127/0x200 net/socket.c:2674
__sys_recvmsg+0xe2/0x1a0 net/socket.c:2704
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: svm range restore work deadlock when process exit
kfd_process_notifier_release flush svm_range_restore_work
which calls svm_range_list_lock_and_flush_work to flush deferred_list
work, but if deferred_list work mmput release the last user, it will
call exit_mmap -> notifier_release, it is deadlock with below backtrace.
Move flush svm_range_restore_work to kfd_process_wq_release to avoid
deadlock. Then svm_range_restore_work take task->mm ref to avoid mm is
gone while validating and mapping ranges to GPU.
Workqueue: events svm_range_deferred_list_work [amdgpu]
Call Trace:
wait_for_completion+0x94/0x100
__flush_work+0x12a/0x1e0
__cancel_work_timer+0x10e/0x190
cancel_delayed_work_sync+0x13/0x20
kfd_process_notifier_release+0x98/0x2a0 [amdgpu]
__mmu_notifier_release+0x74/0x1f0
exit_mmap+0x170/0x200
mmput+0x5d/0x130
svm_range_deferred_list_work+0x104/0x230 [amdgpu]
process_one_work+0x220/0x3c0 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: hisi_sas: Free irq vectors in order for v3 HW
If the driver probe fails to request the channel IRQ or fatal IRQ, the
driver will free the IRQ vectors before freeing the IRQs in free_irq(),
and this will cause a kernel BUG like this:
------------[ cut here ]------------
kernel BUG at drivers/pci/msi.c:369!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
Call trace:
free_msi_irqs+0x118/0x13c
pci_disable_msi+0xfc/0x120
pci_free_irq_vectors+0x24/0x3c
hisi_sas_v3_probe+0x360/0x9d0 [hisi_sas_v3_hw]
local_pci_probe+0x44/0xb0
work_for_cpu_fn+0x20/0x34
process_one_work+0x1d0/0x340
worker_thread+0x2e0/0x460
kthread+0x180/0x190
ret_from_fork+0x10/0x20
---[ end trace b88990335b610c11 ]---
So we use devm_add_action() to control the order in which we free the
vectors. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: unlock inodes when erroring out of xfs_trans_alloc_dir
Debugging a filesystem patch with generic/475 caused the system to hang
after observing the following sequences in dmesg:
XFS (dm-0): metadata I/O error in "xfs_imap_to_bp+0x61/0xe0 [xfs]" at daddr 0x491520 len 32 error 5
XFS (dm-0): metadata I/O error in "xfs_btree_read_buf_block+0xba/0x160 [xfs]" at daddr 0x3445608 len 8 error 5
XFS (dm-0): metadata I/O error in "xfs_imap_to_bp+0x61/0xe0 [xfs]" at daddr 0x138e1c0 len 32 error 5
XFS (dm-0): log I/O error -5
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ea/0x4b0 [xfs] (fs/xfs/xfs_trans_buf.c:311). Shutting down filesystem.
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): Internal error dqp->q_ino.reserved < dqp->q_ino.count at line 869 of file fs/xfs/xfs_trans_dquot.c. Caller xfs_trans_dqresv+0x236/0x440 [xfs]
XFS (dm-0): Corruption detected. Unmount and run xfs_repair
XFS (dm-0): Unmounting Filesystem be6bcbcc-9921-4deb-8d16-7cc94e335fa7
The system is stuck in unmount trying to lock a couple of inodes so that
they can be purged. The dquot corruption notice above is a clue to what
happened -- a link() call tried to set up a transaction to link a child
into a directory. Quota reservation for the transaction failed after IO
errors shut down the filesystem, but then we forgot to unlock the inodes
on our way out. Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netdevsim: fix nsim_pp_hold_write()
nsim_pp_hold_write() has two problems:
1) It may return with rtnl held, as found by syzbot.
2) Its return value does not propagate an error if any. |
| In the Linux kernel, the following vulnerability has been resolved:
ionic: no double destroy workqueue
There are some FW error handling paths that can cause us to
try to destroy the workqueue more than once, so let's be sure
we're checking for that.
The case where this popped up was in an AER event where the
handlers got called in such a way that ionic_reset_prepare()
and thus ionic_dev_teardown() got called twice in a row.
The second time through the workqueue was already destroyed,
and destroy_workqueue() choked on the bad wq pointer.
We didn't hit this in AER handler testing before because at
that time we weren't using a private workqueue. Later we
replaced the use of the system workqueue with our own private
workqueue but hadn't rerun the AER handler testing since then. |
| In the Linux kernel, the following vulnerability has been resolved:
cachestat: fix page cache statistics permission checking
When the 'cachestat()' system call was added in commit cf264e1329fb
("cachestat: implement cachestat syscall"), it was meant to be a much
more convenient (and performant) version of mincore() that didn't need
mapping things into the user virtual address space in order to work.
But it ended up missing the "check for writability or ownership" fix for
mincore(), done in commit 134fca9063ad ("mm/mincore.c: make mincore()
more conservative").
This just adds equivalent logic to 'cachestat()', modified for the file
context (rather than vma). |