Search Results (16756 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50631 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of fdt buffer This is reported by kmemleak detector: unreferenced object 0xff60000082864000 (size 9588): comm "kexec", pid 146, jiffies 4294900634 (age 64.788s) hex dump (first 32 bytes): d0 0d fe ed 00 00 12 ed 00 00 00 48 00 00 11 40 ...........H...@ 00 00 00 28 00 00 00 11 00 00 00 02 00 00 00 00 ...(............ backtrace: [<00000000f95b17c4>] kmemleak_alloc+0x34/0x3e [<00000000b9ec8e3e>] kmalloc_order+0x9c/0xc4 [<00000000a95cf02e>] kmalloc_order_trace+0x34/0xb6 [<00000000f01e68b4>] __kmalloc+0x5c2/0x62a [<000000002bd497b2>] kvmalloc_node+0x66/0xd6 [<00000000906542fa>] of_kexec_alloc_and_setup_fdt+0xa6/0x6ea [<00000000e1166bde>] elf_kexec_load+0x206/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via kvmalloc() to store fdt. While it's not freed back to system when kexec kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing riscv specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there.
CVE-2022-50634 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe() cw_bat_probe() calls create_singlethread_workqueue() and not checked the ret value, which may return NULL. And a null-ptr-deref may happen: cw_bat_probe() create_singlethread_workqueue() # failed, cw_bat->wq is NULL queue_delayed_work() queue_delayed_work_on() __queue_delayed_work() # warning here, but continue __queue_work() # access wq->flags, null-ptr-deref Check the ret value and return -ENOMEM if it is NULL.
CVE-2022-50635 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe() I found a null pointer reference in arch_prepare_kprobe(): # echo 'p cmdline_proc_show' > kprobe_events # echo 'p cmdline_proc_show+16' >> kprobe_events Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc000000000050bfc Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10 NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006 CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0 ... NIP arch_prepare_kprobe+0x10c/0x2d0 LR arch_prepare_kprobe+0xfc/0x2d0 Call Trace: 0xc0000000012f77a0 (unreliable) register_kprobe+0x3c0/0x7a0 __register_trace_kprobe+0x140/0x1a0 __trace_kprobe_create+0x794/0x1040 trace_probe_create+0xc4/0xe0 create_or_delete_trace_kprobe+0x2c/0x80 trace_parse_run_command+0xf0/0x210 probes_write+0x20/0x40 vfs_write+0xfc/0x450 ksys_write+0x84/0x140 system_call_exception+0x17c/0x3a0 system_call_vectored_common+0xe8/0x278 --- interrupt: 3000 at 0x7fffa5682de0 NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000 REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000 The address being probed has some special: cmdline_proc_show: Probe based on ftrace cmdline_proc_show+16: Probe for the next instruction at the ftrace location The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets set to NULL. In arch_prepare_kprobe() it will check for: ... prev = get_kprobe(p->addr - 1); preempt_enable_no_resched(); if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) { ... If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur with a null pointer reference. At this point prev->addr will not be a prefixed instruction, so the check can be skipped. Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn' to fix this problem. [mpe: Trim oops]
CVE-2022-50637 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut() If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(), the program will return, resulting in "table" resource is not released.
CVE-2022-50640 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mmc: core: Fix kernel panic when remove non-standard SDIO card SDIO tuple is only allocated for standard SDIO card, especially it causes memory corruption issues when the non-standard SDIO card has removed, which is because the card device's reference counter does not increase for it at sdio_init_func(), but all SDIO card device reference counter gets decreased at sdio_release_func().
CVE-2022-50641 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: HSI: omap_ssi: Fix refcount leak in ssi_probe When returning or breaking early from a for_each_available_child_of_node() loop, we need to explicitly call of_node_put() on the child node to possibly release the node.
CVE-2022-50677 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipmi: fix use after free in _ipmi_destroy_user() The intf_free() function frees the "intf" pointer so we cannot dereference it again on the next line.
CVE-2022-50676 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks() syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section protected by lock_sock() without realizing that rds_send_xmit() might call lock_sock(). We don't need to protect cancel_delayed_work_sync() using lock_sock(), for even if rds_{send,recv}_worker() re-queued this work while __flush_work() from cancel_delayed_work_sync() was waiting for this work to complete, retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP bit.
CVE-2022-50675 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged"), mte_sync_tags() was only called for pte_tagged() entries (those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently setting PG_mte_tagged on an untagged page. The above commit was required as guests may enable MTE without any control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM. However, the side-effect was that any page with a PTE that looked like swap (or migration) was getting PG_mte_tagged set automatically. A subsequent page copy (e.g. migration) copied the tags to the destination page even if the tags were owned by KASAN. This issue was masked by the page_kasan_tag_reset() call introduced in commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags"). When this commit was reverted (20794545c146), KASAN started reporting access faults because the overriding tags in a page did not match the original page->flags (with CONFIG_KASAN_HW_TAGS=y): BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26 Read at addr f5ff000017f2e000 by task syz-executor.1/2218 Pointer tag: [f5], memory tag: [f2] Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual place where tags are cleared (mte_sync_page_tags()) or restored (mte_restore_tags()).
CVE-2022-50672 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mailbox: zynq-ipi: fix error handling while device_register() fails If device_register() fails, it has two issues: 1. The name allocated by dev_set_name() is leaked. 2. The parent of device is not NULL, device_unregister() is called in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because of removing not added device. Call put_device() to give up the reference, so the name is freed in kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes() to avoid null-ptr-deref.
CVE-2022-50671 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix "kernel NULL pointer dereference" error When rxe_queue_init in the function rxe_qp_init_req fails, both qp->req.task.func and qp->req.task.arg are not initialized. Because of creation of qp fails, the function rxe_create_qp will call rxe_qp_do_cleanup to handle allocated resource. Before calling __rxe_do_task, both qp->req.task.func and qp->req.task.arg should be checked.
CVE-2022-50670 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: omap_hsmmc: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). Fix this by checking the return value and goto error path wihch will call mmc_free_host().
CVE-2022-50669 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: misc: ocxl: fix possible name leak in ocxl_file_register_afu() If device_register() returns error in ocxl_file_register_afu(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(), and info is freed in info_release().
CVE-2022-50666 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix QP destroy to wait for all references dropped. Delay QP destroy completion until all siw references to QP are dropped. The calling RDMA core will free QP structure after successful return from siw_qp_destroy() call, so siw must not hold any remaining reference to the QP upon return. A use-after-free was encountered in xfstest generic/460, while testing NFSoRDMA. Here, after a TCP connection drop by peer, the triggered siw_cm_work_handler got delayed until after QP destroy call, referencing a QP which has already freed.
CVE-2022-50665 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(), as below, it will not print when debug_mask is not set ATH11K_DBG_DATA. ath11k_dbg(ab, ATH11K_DBG_DATA, "failed to find the peer with peer_id %d\n", ppdu_info.peer_id); When run scan with station disconnected, the peer_id is 0 for case HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is reset to 0 in the while loop, so it does not match condition of the check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and then the log "failed to find the peer with peer_id 0" print after the check in the loop, it is below call stack when debug_mask is set ATH11K_DBG_DATA. The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv") add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in ath11k_dp_rx_process_mon_status(), but the commit does not initialize the peer_id to HAL_INVALID_PEERID, then lead the check mis-match. Callstack of the failed log: [12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k] [12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd [12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246 [12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000 [12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18 [12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000 [12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40 [12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000 [12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000 [12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0 [12335.689360] Call Trace: [12335.689377] <IRQ> [12335.689418] ? rcu_read_lock_held_common+0x12/0x50 [12335.689447] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689471] ? rcu_read_lock_held_common+0x12/0x50 [12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689653] ? lock_acquire+0xef/0x360 [12335.689681] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k] [12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689860] call_timer_fn+0xb2/0x2f0 [12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689970] run_timer_softirq+0x21f/0x540 [12335.689999] ? ktime_get+0xad/0x160 [12335.690025] ? lapic_next_deadline+0x2c/0x40 [12335.690053] ? clockevents_program_event+0x82/0x100 [12335.690093] __do_softirq+0x151/0x4a8 [12335.690135] irq_exit_rcu+0xc9/0x100 [12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0 [12335.690189] </IRQ> [12335.690204] <TASK> [12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20 Reset the default value to HAL_INVALID_PEERID each time after memset of ppdu_info as well as others memset which existed in function ath11k_dp_rx_process_mon_status(), then the failed log disappeared. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3
CVE-2022-50663 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix possible memory leak in stmmac_dvr_probe() The bitmap_free() should be called to free priv->af_xdp_zc_qps when create_singlethread_workqueue() fails, otherwise there will be a memory leak, so we add the err path error_wq_init to fix it.
CVE-2022-50662 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: fix memory leak in hns_roce_alloc_mr() When hns_roce_mr_enable() failed in hns_roce_alloc_mr(), mr_key is not released. Compiled test only.
CVE-2022-50661 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: seccomp: Move copy_seccomp() to no failure path. Our syzbot instance reported memory leaks in do_seccomp() [0], similar to the report [1]. It shows that we miss freeing struct seccomp_filter and some objects included in it. We can reproduce the issue with the program below [2] which calls one seccomp() and two clone() syscalls. The first clone()d child exits earlier than its parent and sends a signal to kill it during the second clone(), more precisely before the fatal_signal_pending() test in copy_process(). When the parent receives the signal, it has to destroy the embryonic process and return -EINTR to user space. In the failure path, we have to call seccomp_filter_release() to decrement the filter's refcount. Initially, we called it in free_task() called from the failure path, but the commit 3a15fb6ed92c ("seccomp: release filter after task is fully dead") moved it to release_task() to notify user space as early as possible that the filter is no longer used. To keep the change and current seccomp refcount semantics, let's move copy_seccomp() just after the signal check and add a WARN_ON_ONCE() in free_task() for future debugging. [0]: unreferenced object 0xffff8880063add00 (size 256): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.914s) hex dump (first 32 bytes): 01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ backtrace: do_seccomp (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/seccomp.c:666 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffffc90000035000 (size 4096): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: __vmalloc_node_range (mm/vmalloc.c:3226) __vmalloc_node (mm/vmalloc.c:3261 (discriminator 4)) bpf_prog_alloc_no_stats (kernel/bpf/core.c:91) bpf_prog_alloc (kernel/bpf/core.c:129) bpf_prog_create_from_user (net/core/filter.c:1414) do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffff888003fa1000 (size 1024): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: bpf_prog_alloc_no_stats (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/bpf/core.c:95) bpf_prog_alloc (kernel/bpf/core.c:129) bpf_prog_create_from_user (net/core/filter.c:1414) do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffff888006360240 (size 16): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s) hex dump (first 16 bytes): 01 00 37 00 76 65 72 6c e0 83 01 06 80 88 ff ff ..7.verl........ backtrace: bpf_prog_store_orig_filter (net/core/filter.c:1137) bpf_prog_create_from_user (net/core/filter.c:1428) do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffff888 ---truncated---
CVE-2022-50660 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ipw2200: fix memory leak in ipw_wdev_init() In the error path of ipw_wdev_init(), exception value is returned, and the memory applied for in the function is not released. Also the memory is not released in ipw_pci_probe(). As a result, memory leakage occurs. So memory release needs to be added to the error path of ipw_wdev_init().
CVE-2022-50657 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: mm: add missing memcpy in kasan_init Hi Atish, It seems that the panic is due to the missing memcpy during kasan_init. Could you please check whether this patch is helpful? When doing kasan_populate, the new allocated base_pud/base_p4d should contain kasan_early_shadow_{pud, p4d}'s content. Add the missing memcpy to avoid page fault when read/write kasan shadow region. Tested on: - qemu with sv57 and CONFIG_KASAN on. - qemu with sv48 and CONFIG_KASAN on.