Search Results (16623 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40298 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gve: Implement settime64 with -EOPNOTSUPP ptp_clock_settime() assumes every ptp_clock has implemented settime64(). Stub it with -EOPNOTSUPP to prevent a NULL dereference.
CVE-2025-40283 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: reorder cleanup in btusb_disconnect to avoid UAF There is a KASAN: slab-use-after-free read in btusb_disconnect(). Calling "usb_driver_release_interface(&btusb_driver, data->intf)" will free the btusb data associated with the interface. The same data is then used later in the function, hence the UAF. Fix by moving the accesses to btusb data to before the data is free'd.
CVE-2025-40296 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: int3472: Fix double free of GPIO device during unregister regulator_unregister() already frees the associated GPIO device. On ThinkPad X9 (Lunar Lake), this causes a double free issue that leads to random failures when other drivers (typically Intel THC) attempt to allocate interrupts. The root cause is that the reference count of the pinctrl_intel_platform module unexpectedly drops to zero when this driver defers its probe. This behavior can also be reproduced by unloading the module directly. Fix the issue by removing the redundant release of the GPIO device during regulator unregistration.
CVE-2025-40277 1 Linux 1 Linux Kernel 2025-12-08 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE This data originates from userspace and is used in buffer offset calculations which could potentially overflow causing an out-of-bounds access.
CVE-2025-40294 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix OOB access in parse_adv_monitor_pattern() In the parse_adv_monitor_pattern() function, the value of the 'length' variable is currently limited to HCI_MAX_EXT_AD_LENGTH(251). The size of the 'value' array in the mgmt_adv_pattern structure is 31. If the value of 'pattern[i].length' is set in the user space and exceeds 31, the 'patterns[i].value' array can be accessed out of bound when copied. Increasing the size of the 'value' array in the 'mgmt_adv_pattern' structure will break the userspace. Considering this, and to avoid OOB access revert the limits for 'offset' and 'length' back to the value of HCI_MAX_AD_LENGTH. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-40302 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: videobuf2: forbid remove_bufs when legacy fileio is active vb2_ioctl_remove_bufs() call manipulates queue internal buffer list, potentially overwriting some pointers used by the legacy fileio access mode. Forbid that ioctl when fileio is active to protect internal queue state between subsequent read/write calls.
CVE-2025-40301 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: validate skb length for unknown CC opcode In hci_cmd_complete_evt(), if the command complete event has an unknown opcode, we assume the first byte of the remaining skb->data contains the return status. However, parameter data has previously been pulled in hci_event_func(), which may leave the skb empty. If so, using skb->data[0] for the return status uses un-init memory. The fix is to check skb->len before using skb->data.
CVE-2025-40291 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix regbuf vector size truncation There is a report of io_estimate_bvec_size() truncating the calculated number of segments that leads to corruption issues. Check it doesn't overflow "int"s used later. Rough but simple, can be improved on top.
CVE-2025-40275 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix NULL pointer dereference in snd_usb_mixer_controls_badd In snd_usb_create_streams(), for UAC version 3 devices, the Interface Association Descriptor (IAD) is retrieved via usb_ifnum_to_if(). If this call fails, a fallback routine attempts to obtain the IAD from the next interface and sets a BADD profile. However, snd_usb_mixer_controls_badd() assumes that the IAD retrieved from usb_ifnum_to_if() is always valid, without performing a NULL check. This can lead to a NULL pointer dereference when usb_ifnum_to_if() fails to find the interface descriptor. This patch adds a NULL pointer check after calling usb_ifnum_to_if() in snd_usb_mixer_controls_badd() to prevent the dereference. This issue was discovered by syzkaller, which triggered the bug by sending a crafted USB device descriptor.
CVE-2025-40273 1 Linux 1 Linux Kernel 2025-12-08 6.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSD: free copynotify stateid in nfs4_free_ol_stateid() Typically copynotify stateid is freed either when parent's stateid is being close/freed or in nfsd4_laundromat if the stateid hasn't been used in a lease period. However, in case when the server got an OPEN (which created a parent stateid), followed by a COPY_NOTIFY using that stateid, followed by a client reboot. New client instance while doing CREATE_SESSION would force expire previous state of this client. It leads to the open state being freed thru release_openowner-> nfs4_free_ol_stateid() and it finds that it still has copynotify stateid associated with it. We currently print a warning and is triggerred WARNING: CPU: 1 PID: 8858 at fs/nfsd/nfs4state.c:1550 nfs4_free_ol_stateid+0xb0/0x100 [nfsd] This patch, instead, frees the associated copynotify stateid here. If the parent stateid is freed (without freeing the copynotify stateids associated with it), it leads to the list corruption when laundromat ends up freeing the copynotify state later. [ 1626.839430] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 1626.842828] Modules linked in: nfnetlink_queue nfnetlink_log bluetooth cfg80211 rpcrdma rdma_cm iw_cm ib_cm ib_core nfsd nfs_acl lockd grace nfs_localio ext4 crc16 mbcache jbd2 overlay uinput snd_seq_dummy snd_hrtimer qrtr rfkill vfat fat uvcvideo snd_hda_codec_generic videobuf2_vmalloc videobuf2_memops snd_hda_intel uvc snd_intel_dspcfg videobuf2_v4l2 videobuf2_common snd_hda_codec snd_hda_core videodev snd_hwdep snd_seq mc snd_seq_device snd_pcm snd_timer snd soundcore sg loop auth_rpcgss vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vmw_vmci vsock xfs 8021q garp stp llc mrp nvme ghash_ce e1000e nvme_core sr_mod nvme_keyring nvme_auth cdrom vmwgfx drm_ttm_helper ttm sunrpc dm_mirror dm_region_hash dm_log iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse dm_multipath dm_mod nfnetlink [ 1626.855594] CPU: 2 UID: 0 PID: 199 Comm: kworker/u24:33 Kdump: loaded Tainted: G B W 6.17.0-rc7+ #22 PREEMPT(voluntary) [ 1626.857075] Tainted: [B]=BAD_PAGE, [W]=WARN [ 1626.857573] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.24006586.BA64.2406042154 06/04/2024 [ 1626.858724] Workqueue: nfsd4 laundromat_main [nfsd] [ 1626.859304] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 1626.860010] pc : __list_del_entry_valid_or_report+0x148/0x200 [ 1626.860601] lr : __list_del_entry_valid_or_report+0x148/0x200 [ 1626.861182] sp : ffff8000881d7a40 [ 1626.861521] x29: ffff8000881d7a40 x28: 0000000000000018 x27: ffff0000c2a98200 [ 1626.862260] x26: 0000000000000600 x25: 0000000000000000 x24: ffff8000881d7b20 [ 1626.862986] x23: ffff0000c2a981e8 x22: 1fffe00012410e7d x21: ffff0000920873e8 [ 1626.863701] x20: ffff0000920873e8 x19: ffff000086f22998 x18: 0000000000000000 [ 1626.864421] x17: 20747562202c3839 x16: 3932326636383030 x15: 3030666666662065 [ 1626.865092] x14: 6220646c756f6873 x13: 0000000000000001 x12: ffff60004fd9e4a3 [ 1626.865713] x11: 1fffe0004fd9e4a2 x10: ffff60004fd9e4a2 x9 : dfff800000000000 [ 1626.866320] x8 : 00009fffb0261b5e x7 : ffff00027ecf2513 x6 : 0000000000000001 [ 1626.866938] x5 : ffff00027ecf2510 x4 : ffff60004fd9e4a3 x3 : 0000000000000000 [ 1626.867553] x2 : 0000000000000000 x1 : ffff000096069640 x0 : 000000000000006d [ 1626.868167] Call trace: [ 1626.868382] __list_del_entry_valid_or_report+0x148/0x200 (P) [ 1626.868876] _free_cpntf_state_locked+0xd0/0x268 [nfsd] [ 1626.869368] nfs4_laundromat+0x6f8/0x1058 [nfsd] [ 1626.869813] laundromat_main+0x24/0x60 [nfsd] [ 1626.870231] process_one_work+0x584/0x1050 [ 1626.870595] worker_thread+0x4c4/0xc60 [ 1626.870893] kthread+0x2f8/0x398 [ 1626.871146] ret_from_fork+0x10/0x20 [ 1626.871422] Code: aa1303e1 aa1403e3 910e8000 97bc55d7 (d4210000) [ 1626.871892] SMP: stopping secondary CPUs
CVE-2025-40278 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak Fix a KMSAN kernel-infoleak detected by the syzbot . [net?] KMSAN: kernel-infoleak in __skb_datagram_iter In tcf_ife_dump(), the variable 'opt' was partially initialized using a designatied initializer. While the padding bytes are reamined uninitialized. nla_put() copies the entire structure into a netlink message, these uninitialized bytes leaked to userspace. Initialize the structure with memset before assigning its fields to ensure all members and padding are cleared prior to beign copied. This change silences the KMSAN report and prevents potential information leaks from the kernel memory. This fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures no infoleak.
CVE-2025-40290 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xsk: avoid data corruption on cq descriptor number Since commit 30f241fcf52a ("xsk: Fix immature cq descriptor production"), the descriptor number is stored in skb control block and xsk_cq_submit_addr_locked() relies on it to put the umem addrs onto pool's completion queue. skb control block shouldn't be used for this purpose as after transmit xsk doesn't have control over it and other subsystems could use it. This leads to the following kernel panic due to a NULL pointer dereference. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 2 UID: 1 PID: 927 Comm: p4xsk.bin Not tainted 6.16.12+deb14-cloud-amd64 #1 PREEMPT(lazy) Debian 6.16.12-1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-debian-1.17.0-1 04/01/2014 RIP: 0010:xsk_destruct_skb+0xd0/0x180 [...] Call Trace: <IRQ> ? napi_complete_done+0x7a/0x1a0 ip_rcv_core+0x1bb/0x340 ip_rcv+0x30/0x1f0 __netif_receive_skb_one_core+0x85/0xa0 process_backlog+0x87/0x130 __napi_poll+0x28/0x180 net_rx_action+0x339/0x420 handle_softirqs+0xdc/0x320 ? handle_edge_irq+0x90/0x1e0 do_softirq.part.0+0x3b/0x60 </IRQ> <TASK> __local_bh_enable_ip+0x60/0x70 __dev_direct_xmit+0x14e/0x1f0 __xsk_generic_xmit+0x482/0xb70 ? __remove_hrtimer+0x41/0xa0 ? __xsk_generic_xmit+0x51/0xb70 ? _raw_spin_unlock_irqrestore+0xe/0x40 xsk_sendmsg+0xda/0x1c0 __sys_sendto+0x1ee/0x200 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x84/0x2f0 ? __pfx_pollwake+0x10/0x10 ? __rseq_handle_notify_resume+0xad/0x4c0 ? restore_fpregs_from_fpstate+0x3c/0x90 ? switch_fpu_return+0x5b/0xe0 ? do_syscall_64+0x204/0x2f0 ? do_syscall_64+0x204/0x2f0 ? do_syscall_64+0x204/0x2f0 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> [...] Kernel panic - not syncing: Fatal exception in interrupt Kernel Offset: 0x1c000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) Instead use the skb destructor_arg pointer along with pointer tagging. As pointers are always aligned to 8B, use the bottom bit to indicate whether this a single address or an allocated struct containing several addresses.
CVE-2022-50618 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: meson-gx: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). Fix this by checking the return value and goto error path which will call mmc_free_host().
CVE-2022-50629 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rsi: Fix memory leak in rsi_coex_attach() The coex_cb needs to be freed when rsi_create_kthread() failed in rsi_coex_attach().
CVE-2022-50625 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: serial: amba-pl011: avoid SBSA UART accessing DMACR register Chapter "B Generic UART" in "ARM Server Base System Architecture" [1] documentation describes a generic UART interface. Such generic UART does not support DMA. In current code, sbsa_uart_pops and amba_pl011_pops share the same stop_rx operation, which will invoke pl011_dma_rx_stop, leading to an access of the DMACR register. This commit adds a using_rx_dma check in pl011_dma_rx_stop to avoid the access to DMACR register for SBSA UARTs which does not support DMA. When the kernel enables DMA engine with "CONFIG_DMA_ENGINE=y", Linux SBSA PL011 driver will access PL011 DMACR register in some functions. For most real SBSA Pl011 hardware implementations, the DMACR write behaviour will be ignored. So these DMACR operations will not cause obvious problems. But for some virtual SBSA PL011 hardware, like Xen virtual SBSA PL011 (vpl011) device, the behaviour might be different. Xen vpl011 emulation will inject a data abort to guest, when guest is accessing an unimplemented UART register. As Xen VPL011 is SBSA compatible, it will not implement DMACR register. So when Linux SBSA PL011 driver access DMACR register, it will get an unhandled data abort fault and the application will get a segmentation fault: Unhandled fault at 0xffffffc00944d048 Mem abort info: ESR = 0x96000000 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x00: ttbr address size fault Data abort info: ISV = 0, ISS = 0x00000000 CM = 0, WnR = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000020e2e000 [ffffffc00944d048] pgd=100000003ffff803, p4d=100000003ffff803, pud=100000003ffff803, pmd=100000003fffa803, pte=006800009c090f13 Internal error: ttbr address size fault: 96000000 [#1] PREEMPT SMP ... Call trace: pl011_stop_rx+0x70/0x80 tty_port_shutdown+0x7c/0xb4 tty_port_close+0x60/0xcc uart_close+0x34/0x8c tty_release+0x144/0x4c0 __fput+0x78/0x220 ____fput+0x1c/0x30 task_work_run+0x88/0xc0 do_notify_resume+0x8d0/0x123c el0_svc+0xa8/0xc0 el0t_64_sync_handler+0xa4/0x130 el0t_64_sync+0x1a0/0x1a4 Code: b9000083 b901f001 794038a0 8b000042 (b9000041) ---[ end trace 83dd93df15c3216f ]--- note: bootlogd[132] exited with preempt_count 1 /etc/rcS.d/S07bootlogd: line 47: 132 Segmentation fault start-stop-daemon This has been discussed in the Xen community, and we think it should fix this in Linux. See [2] for more information. [1] https://developer.arm.com/documentation/den0094/c/?lang=en [2] https://lists.xenproject.org/archives/html/xen-devel/2022-11/msg00543.html
CVE-2022-50624 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: netsec: fix error handling in netsec_register_mdio() If phy_device_register() fails, phy_device_free() need be called to put refcount, so memory of phy device and device name can be freed in callback function. If get_phy_device() fails, mdiobus_unregister() need be called, or it will cause warning in mdiobus_free() and kobject is leaked.
CVE-2022-50623 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fpga: prevent integer overflow in dfl_feature_ioctl_set_irq() The "hdr.count * sizeof(s32)" multiplication can overflow on 32 bit systems leading to memory corruption. Use array_size() to fix that.
CVE-2022-50620 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to invalidate dcc->f2fs_issue_discard in error path Syzbot reports a NULL pointer dereference issue as below: __refcount_add include/linux/refcount.h:193 [inline] __refcount_inc include/linux/refcount.h:250 [inline] refcount_inc include/linux/refcount.h:267 [inline] get_task_struct include/linux/sched/task.h:110 [inline] kthread_stop+0x34/0x1c0 kernel/kthread.c:703 f2fs_stop_discard_thread+0x3c/0x5c fs/f2fs/segment.c:1638 kill_f2fs_super+0x5c/0x194 fs/f2fs/super.c:4522 deactivate_locked_super+0x70/0xe8 fs/super.c:332 deactivate_super+0xd0/0xd4 fs/super.c:363 cleanup_mnt+0x1f8/0x234 fs/namespace.c:1186 __cleanup_mnt+0x20/0x30 fs/namespace.c:1193 task_work_run+0xc4/0x14c kernel/task_work.c:177 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x26c/0xbe0 kernel/exit.c:795 do_group_exit+0x60/0xe8 kernel/exit.c:925 __do_sys_exit_group kernel/exit.c:936 [inline] __se_sys_exit_group kernel/exit.c:934 [inline] __wake_up_parent+0x0/0x40 kernel/exit.c:934 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 The root cause of this issue is in error path of f2fs_start_discard_thread(), it missed to invalidate dcc->f2fs_issue_discard, later kthread_stop() may access invalid pointer.
CVE-2022-50619 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr() If the number of pages from the userptr BO differs from the SG BO then the allocated memory for the SG table doesn't get freed before returning -EINVAL, which may lead to a memory leak in some error paths. Fix this by checking the number of pages before allocating memory for the SG table.
CVE-2022-50617 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/powerplay/psm: Fix memory leak in power state init Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power state init") made the power state init function return early in case of failure to get an entry from the powerplay table, but it missed to clean up the allocated memory for the current power state before returning.