| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
seccomp: Move copy_seccomp() to no failure path.
Our syzbot instance reported memory leaks in do_seccomp() [0], similar
to the report [1]. It shows that we miss freeing struct seccomp_filter
and some objects included in it.
We can reproduce the issue with the program below [2] which calls one
seccomp() and two clone() syscalls.
The first clone()d child exits earlier than its parent and sends a
signal to kill it during the second clone(), more precisely before the
fatal_signal_pending() test in copy_process(). When the parent receives
the signal, it has to destroy the embryonic process and return -EINTR to
user space. In the failure path, we have to call seccomp_filter_release()
to decrement the filter's refcount.
Initially, we called it in free_task() called from the failure path, but
the commit 3a15fb6ed92c ("seccomp: release filter after task is fully
dead") moved it to release_task() to notify user space as early as possible
that the filter is no longer used.
To keep the change and current seccomp refcount semantics, let's move
copy_seccomp() just after the signal check and add a WARN_ON_ONCE() in
free_task() for future debugging.
[0]:
unreferenced object 0xffff8880063add00 (size 256):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.914s)
hex dump (first 32 bytes):
01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace:
do_seccomp (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/seccomp.c:666 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffffc90000035000 (size 4096):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
__vmalloc_node_range (mm/vmalloc.c:3226)
__vmalloc_node (mm/vmalloc.c:3261 (discriminator 4))
bpf_prog_alloc_no_stats (kernel/bpf/core.c:91)
bpf_prog_alloc (kernel/bpf/core.c:129)
bpf_prog_create_from_user (net/core/filter.c:1414)
do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffff888003fa1000 (size 1024):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
bpf_prog_alloc_no_stats (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/bpf/core.c:95)
bpf_prog_alloc (kernel/bpf/core.c:129)
bpf_prog_create_from_user (net/core/filter.c:1414)
do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffff888006360240 (size 16):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s)
hex dump (first 16 bytes):
01 00 37 00 76 65 72 6c e0 83 01 06 80 88 ff ff ..7.verl........
backtrace:
bpf_prog_store_orig_filter (net/core/filter.c:1137)
bpf_prog_create_from_user (net/core/filter.c:1428)
do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffff888
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: fix possible memory leak in stmmac_dvr_probe()
The bitmap_free() should be called to free priv->af_xdp_zc_qps
when create_singlethread_workqueue() fails, otherwise there will
be a memory leak, so we add the err path error_wq_init to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected
It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(),
as below, it will not print when debug_mask is not set ATH11K_DBG_DATA.
ath11k_dbg(ab, ATH11K_DBG_DATA,
"failed to find the peer with peer_id %d\n",
ppdu_info.peer_id);
When run scan with station disconnected, the peer_id is 0 for case
HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called
from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is
reset to 0 in the while loop, so it does not match condition of the
check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and
then the log "failed to find the peer with peer_id 0" print after the
check in the loop, it is below call stack when debug_mask is set
ATH11K_DBG_DATA.
The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv")
add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in
ath11k_dp_rx_process_mon_status(), but the commit does not initialize
the peer_id to HAL_INVALID_PEERID, then lead the check mis-match.
Callstack of the failed log:
[12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k]
[12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd
[12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246
[12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000
[12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18
[12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000
[12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40
[12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000
[12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000
[12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0
[12335.689360] Call Trace:
[12335.689377] <IRQ>
[12335.689418] ? rcu_read_lock_held_common+0x12/0x50
[12335.689447] ? rcu_read_lock_sched_held+0x25/0x80
[12335.689471] ? rcu_read_lock_held_common+0x12/0x50
[12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k]
[12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k]
[12335.689653] ? lock_acquire+0xef/0x360
[12335.689681] ? rcu_read_lock_sched_held+0x25/0x80
[12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k]
[12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k]
[12335.689860] call_timer_fn+0xb2/0x2f0
[12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k]
[12335.689970] run_timer_softirq+0x21f/0x540
[12335.689999] ? ktime_get+0xad/0x160
[12335.690025] ? lapic_next_deadline+0x2c/0x40
[12335.690053] ? clockevents_program_event+0x82/0x100
[12335.690093] __do_softirq+0x151/0x4a8
[12335.690135] irq_exit_rcu+0xc9/0x100
[12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0
[12335.690189] </IRQ>
[12335.690204] <TASK>
[12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20
Reset the default value to HAL_INVALID_PEERID each time after memset
of ppdu_info as well as others memset which existed in function
ath11k_dp_rx_process_mon_status(), then the failed log disappeared.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8186: Fix use-after-free in driver remove path
When devm runs function in the "remove" path for a device it runs them
in the reverse order. That means that if you have parts of your driver
that aren't using devm or are using "roll your own" devm w/
devm_add_action_or_reset() you need to keep that in mind.
The mt8186 audio driver didn't quite get this right. Specifically, in
mt8186_init_clock() it called mt8186_audsys_clk_register() and then
went on to call a bunch of other devm function. The caller of
mt8186_init_clock() used devm_add_action_or_reset() to call
mt8186_deinit_clock() but, because of the intervening devm functions,
the order was wrong.
Specifically at probe time, the order was:
1. mt8186_audsys_clk_register()
2. afe_priv->clk = devm_kcalloc(...)
3. afe_priv->clk[i] = devm_clk_get(...)
At remove time, the order (which should have been 3, 2, 1) was:
1. mt8186_audsys_clk_unregister()
3. Free all of afe_priv->clk[i]
2. Free afe_priv->clk
The above seemed to be causing a use-after-free. Luckily, it's easy to
fix this by simply using devm more correctly. Let's move the
devm_add_action_or_reset() to the right place. In addition to fixing
the use-after-free, code inspection shows that this fixes a leak
(missing call to mt8186_audsys_clk_unregister()) that would have
happened if any of the syscon_regmap_lookup_by_phandle() calls in
mt8186_init_clock() had failed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: ocelot: call dsa_tag_8021q_unregister() under rtnl_lock() on driver remove
When the tagging protocol in current use is "ocelot-8021q" and we unbind
the driver, we see this splat:
$ echo '0000:00:00.2' > /sys/bus/pci/drivers/fsl_enetc/unbind
mscc_felix 0000:00:00.5 swp0: left promiscuous mode
sja1105 spi2.0: Link is Down
DSA: tree 1 torn down
mscc_felix 0000:00:00.5 swp2: left promiscuous mode
sja1105 spi2.2: Link is Down
DSA: tree 3 torn down
fsl_enetc 0000:00:00.2 eno2: left promiscuous mode
mscc_felix 0000:00:00.5: Link is Down
------------[ cut here ]------------
RTNL: assertion failed at net/dsa/tag_8021q.c (409)
WARNING: CPU: 1 PID: 329 at net/dsa/tag_8021q.c:409 dsa_tag_8021q_unregister+0x12c/0x1a0
Modules linked in:
CPU: 1 PID: 329 Comm: bash Not tainted 6.5.0-rc3+ #771
pc : dsa_tag_8021q_unregister+0x12c/0x1a0
lr : dsa_tag_8021q_unregister+0x12c/0x1a0
Call trace:
dsa_tag_8021q_unregister+0x12c/0x1a0
felix_tag_8021q_teardown+0x130/0x150
felix_teardown+0x3c/0xd8
dsa_tree_teardown_switches+0xbc/0xe0
dsa_unregister_switch+0x168/0x260
felix_pci_remove+0x30/0x60
pci_device_remove+0x4c/0x100
device_release_driver_internal+0x188/0x288
device_links_unbind_consumers+0xfc/0x138
device_release_driver_internal+0xe0/0x288
device_driver_detach+0x24/0x38
unbind_store+0xd8/0x108
drv_attr_store+0x30/0x50
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
RTNL: assertion failed at net/8021q/vlan_core.c (376)
WARNING: CPU: 1 PID: 329 at net/8021q/vlan_core.c:376 vlan_vid_del+0x1b8/0x1f0
CPU: 1 PID: 329 Comm: bash Tainted: G W 6.5.0-rc3+ #771
pc : vlan_vid_del+0x1b8/0x1f0
lr : vlan_vid_del+0x1b8/0x1f0
dsa_tag_8021q_unregister+0x8c/0x1a0
felix_tag_8021q_teardown+0x130/0x150
felix_teardown+0x3c/0xd8
dsa_tree_teardown_switches+0xbc/0xe0
dsa_unregister_switch+0x168/0x260
felix_pci_remove+0x30/0x60
pci_device_remove+0x4c/0x100
device_release_driver_internal+0x188/0x288
device_links_unbind_consumers+0xfc/0x138
device_release_driver_internal+0xe0/0x288
device_driver_detach+0x24/0x38
unbind_store+0xd8/0x108
drv_attr_store+0x30/0x50
DSA: tree 0 torn down
This was somewhat not so easy to spot, because "ocelot-8021q" is not the
default tagging protocol, and thus, not everyone who tests the unbinding
path may have switched to it beforehand. The default
felix_tag_npi_teardown() does not require rtnl_lock() to be held. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: Drop aux devices together with DP controller
Using devres to depopulate the aux bus made sure that upon a probe
deferral the EDP panel device would be destroyed and recreated upon next
attempt.
But the struct device which the devres is tied to is the DPUs
(drm_dev->dev), which may be happen after the DP controller is torn
down.
Indications of this can be seen in the commonly seen EDID-hexdump full
of zeros in the log, or the occasional/rare KASAN fault where the
panel's attempt to read the EDID information causes a use after free on
DP resources.
It's tempting to move the devres to the DP controller's struct device,
but the resources used by the device(s) on the aux bus are explicitly
torn down in the error path. The KASAN-reported use-after-free also
remains, as the DP aux "module" explicitly frees its devres-allocated
memory in this code path.
As such, explicitly depopulate the aux bus in the error path, and in the
component unbind path, to avoid these issues.
Patchwork: https://patchwork.freedesktop.org/patch/542163/ |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_add_adv_monitor()
KSAN reports use-after-free in hci_add_adv_monitor().
While adding an adv monitor,
hci_add_adv_monitor() calls ->
msft_add_monitor_pattern() calls ->
msft_add_monitor_sync() calls ->
msft_le_monitor_advertisement_cb() calls in an error case ->
hci_free_adv_monitor() which frees the *moniter.
This is referenced by bt_dev_dbg() in hci_add_adv_monitor().
Fix the bt_dev_dbg() by using handle instead of monitor->handle. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix null-ptr-deref in raid10_sync_request
init_resync() inits mempool and sets conf->have_replacemnt at the beginning
of sync, close_sync() frees the mempool when sync is completed.
After [1] recovery might be skipped and init_resync() is called but
close_sync() is not. null-ptr-deref occurs with r10bio->dev[i].repl_bio.
The following is one way to reproduce the issue.
1) create a array, wait for resync to complete, mddev->recovery_cp is set
to MaxSector.
2) recovery is woken and it is skipped. conf->have_replacement is set to
0 in init_resync(). close_sync() not called.
3) some io errors and rdev A is set to WantReplacement.
4) a new device is added and set to A's replacement.
5) recovery is woken, A have replacement, but conf->have_replacemnt is
0. r10bio->dev[i].repl_bio will not be alloced and null-ptr-deref
occurs.
Fix it by not calling init_resync() if recovery skipped.
[1] commit 7e83ccbecd60 ("md/raid10: Allow skipping recovery when clean arrays are assembled") |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_close_cached_fid()
find_or_create_cached_dir() could grab a new reference after kref_put()
had seen the refcount drop to zero but before cfid_list_lock is acquired
in smb2_close_cached_fid(), leading to use-after-free.
Switch to kref_put_lock() so cfid_release() is called with
cfid_list_lock held, closing that gap. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the
string is not guaranteed to be NULL terminated when xdbc_trace() is called.
Reserve an extra byte, which will be zeroed automatically because 'buf' is
a static variable, in order to avoid troubles, should it happen. |
| In the Linux kernel, the following vulnerability has been resolved:
usb-storage: alauda: Fix uninit-value in alauda_check_media()
Syzbot got KMSAN to complain about access to an uninitialized value in
the alauda subdriver of usb-storage:
BUG: KMSAN: uninit-value in alauda_transport+0x462/0x57f0
drivers/usb/storage/alauda.c:1137
CPU: 0 PID: 12279 Comm: usb-storage Not tainted 5.3.0-rc7+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x191/0x1f0 lib/dump_stack.c:113
kmsan_report+0x13a/0x2b0 mm/kmsan/kmsan_report.c:108
__msan_warning+0x73/0xe0 mm/kmsan/kmsan_instr.c:250
alauda_check_media+0x344/0x3310 drivers/usb/storage/alauda.c:460
The problem is that alauda_check_media() doesn't verify that its USB
transfer succeeded before trying to use the received data. What
should happen if the transfer fails isn't entirely clear, but a
reasonably conservative approach is to pretend that no media is
present.
A similar problem exists in a usb_stor_dbg() call in
alauda_get_media_status(). In this case, when an error occurs the
call is redundant, because usb_stor_ctrl_transfer() already will print
a debugging message.
Finally, unrelated to the uninitialized memory access, is the fact
that alauda_check_media() performs DMA to a buffer on the stack.
Fortunately usb-storage provides a general purpose DMA-able buffer for
uses like this. We'll use it instead. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix error handling for SOCK_DGRAM in kcm_sendmsg().
syzkaller found a memory leak in kcm_sendmsg(), and commit c821a88bd720
("kcm: Fix memory leak in error path of kcm_sendmsg()") suppressed it by
updating kcm_tx_msg(head)->last_skb if partial data is copied so that the
following sendmsg() will resume from the skb.
However, we cannot know how many bytes were copied when we get the error.
Thus, we could mess up the MSG_MORE queue.
When kcm_sendmsg() fails for SOCK_DGRAM, we should purge the queue as we
do so for UDP by udp_flush_pending_frames().
Even without this change, when the error occurred, the following sendmsg()
resumed from a wrong skb and the queue was messed up. However, we have
yet to get such a report, and only syzkaller stumbled on it. So, this
can be changed safely.
Note this does not change SOCK_SEQPACKET behaviour. |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: Fix out of bounds access in DCCP error handler
There was a previous attempt to fix an out-of-bounds access in the DCCP
error handlers, but that fix assumed that the error handlers only want
to access the first 8 bytes of the DCCP header. Actually, they also look
at the DCCP sequence number, which is stored beyond 8 bytes, so an
explicit pskb_may_pull() is required. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Zeroing allocated object from slab in bpf memory allocator
Currently the freed element in bpf memory allocator may be immediately
reused, for htab map the reuse will reinitialize special fields in map
value (e.g., bpf_spin_lock), but lookup procedure may still access
these special fields, and it may lead to hard-lockup as shown below:
NMI backtrace for cpu 16
CPU: 16 PID: 2574 Comm: htab.bin Tainted: G L 6.1.0+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:queued_spin_lock_slowpath+0x283/0x2c0
......
Call Trace:
<TASK>
copy_map_value_locked+0xb7/0x170
bpf_map_copy_value+0x113/0x3c0
__sys_bpf+0x1c67/0x2780
__x64_sys_bpf+0x1c/0x20
do_syscall_64+0x30/0x60
entry_SYSCALL_64_after_hwframe+0x46/0xb0
......
</TASK>
For htab map, just like the preallocated case, these is no need to
initialize these special fields in map value again once these fields
have been initialized. For preallocated htab map, these fields are
initialized through __GFP_ZERO in bpf_map_area_alloc(), so do the
similar thing for non-preallocated htab in bpf memory allocator. And
there is no need to use __GFP_ZERO for per-cpu bpf memory allocator,
because __alloc_percpu_gfp() does it implicitly. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init
of_icc_get() alloc resources for path handle, we should release it when not
need anymore. Like the release in dwc3_qcom_interconnect_exit() function.
Add icc_put() in error handling to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
io-wq: Fix memory leak in worker creation
If the CPU mask allocation for a node fails, then the memory allocated for
the 'io_wqe' struct of the current node doesn't get freed on the error
handling path, since it has not yet been added to the 'wqes' array.
This was spotted when fuzzing v6.1-rc1 with Syzkaller:
BUG: memory leak
unreferenced object 0xffff8880093d5000 (size 1024):
comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720
[<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130
[<000000004e107011>] io_wq_create+0x7b9/0xdc0
[<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d
[<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba
[<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce
[<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80
[<000000008a8a7508>] do_syscall_64+0x5d/0x90
[<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: hpsa: Fix possible memory leak in hpsa_init_one()
The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in
hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to
clean1 directly, which frees h and leaks the h->reply_map.
Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead
free h directly. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix recursive locking direct_mutex in ftrace_modify_direct_caller
Naveen reported recursive locking of direct_mutex with sample
ftrace-direct-modify.ko:
[ 74.762406] WARNING: possible recursive locking detected
[ 74.762887] 6.0.0-rc6+ #33 Not tainted
[ 74.763216] --------------------------------------------
[ 74.763672] event-sample-fn/1084 is trying to acquire lock:
[ 74.764152] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
register_ftrace_function+0x1f/0x180
[ 74.764922]
[ 74.764922] but task is already holding lock:
[ 74.765421] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.766142]
[ 74.766142] other info that might help us debug this:
[ 74.766701] Possible unsafe locking scenario:
[ 74.766701]
[ 74.767216] CPU0
[ 74.767437] ----
[ 74.767656] lock(direct_mutex);
[ 74.767952] lock(direct_mutex);
[ 74.768245]
[ 74.768245] *** DEADLOCK ***
[ 74.768245]
[ 74.768750] May be due to missing lock nesting notation
[ 74.768750]
[ 74.769332] 1 lock held by event-sample-fn/1084:
[ 74.769731] #0: ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.770496]
[ 74.770496] stack backtrace:
[ 74.770884] CPU: 4 PID: 1084 Comm: event-sample-fn Not tainted ...
[ 74.771498] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
[ 74.772474] Call Trace:
[ 74.772696] <TASK>
[ 74.772896] dump_stack_lvl+0x44/0x5b
[ 74.773223] __lock_acquire.cold.74+0xac/0x2b7
[ 74.773616] lock_acquire+0xd2/0x310
[ 74.773936] ? register_ftrace_function+0x1f/0x180
[ 74.774357] ? lock_is_held_type+0xd8/0x130
[ 74.774744] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.775213] __mutex_lock+0x99/0x1010
[ 74.775536] ? register_ftrace_function+0x1f/0x180
[ 74.775954] ? slab_free_freelist_hook.isra.43+0x115/0x160
[ 74.776424] ? ftrace_set_hash+0x195/0x220
[ 74.776779] ? register_ftrace_function+0x1f/0x180
[ 74.777194] ? kfree+0x3e1/0x440
[ 74.777482] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.777941] ? __schedule+0xb40/0xb40
[ 74.778258] ? register_ftrace_function+0x1f/0x180
[ 74.778672] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.779128] register_ftrace_function+0x1f/0x180
[ 74.779527] ? ftrace_set_filter_ip+0x33/0x70
[ 74.779910] ? __schedule+0xb40/0xb40
[ 74.780231] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.780678] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.781147] ftrace_modify_direct_caller+0x5b/0x90
[ 74.781563] ? 0xffffffffa0201000
[ 74.781859] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.782309] modify_ftrace_direct+0x1b2/0x1f0
[ 74.782690] ? __schedule+0xb40/0xb40
[ 74.783014] ? simple_thread+0x2a/0xb0 [ftrace_direct_modify]
[ 74.783508] ? __schedule+0xb40/0xb40
[ 74.783832] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.784294] simple_thread+0x76/0xb0 [ftrace_direct_modify]
[ 74.784766] kthread+0xf5/0x120
[ 74.785052] ? kthread_complete_and_exit+0x20/0x20
[ 74.785464] ret_from_fork+0x22/0x30
[ 74.785781] </TASK>
Fix this by using register_ftrace_function_nolock in
ftrace_modify_direct_caller. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: atmel-mci: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
it will lead two issues:
1. The memory that allocated in mmc_alloc_host() is leaked.
2. In the remove() path, mmc_remove_host() will be called to
delete device, but it's not added yet, it will lead a kernel
crash because of null-ptr-deref in device_del().
So fix this by checking the return value and calling mmc_free_host()
in the error path. |