| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix perf_pending_task() UaF
Per syzbot it is possible for perf_pending_task() to run after the
event is free()'d. There are two related but distinct cases:
- the task_work was already queued before destroying the event;
- destroying the event itself queues the task_work.
The first cannot be solved using task_work_cancel() since
perf_release() itself might be called from a task_work (____fput),
which means the current->task_works list is already empty and
task_work_cancel() won't be able to find the perf_pending_task()
entry.
The simplest alternative is extending the perf_event lifetime to cover
the task_work.
The second is just silly, queueing a task_work while you know the
event is going away makes no sense and is easily avoided by
re-arranging how the event is marked STATE_DEAD and ensuring it goes
through STATE_OFF on the way down. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix leaking sent_cmd skb
sent_cmd memory is not freed before freeing hci_dev causing it to leak
it contents. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix use-after-free for aborted SSP/STP sas_task
Currently a use-after-free may occur if a sas_task is aborted by the upper
layer before we handle the I/O completion in mpi_ssp_completion() or
mpi_sata_completion().
In this case, the following are the two steps in handling those I/O
completions:
- Call complete() to inform the upper layer handler of completion of
the I/O.
- Release driver resources associated with the sas_task in
pm8001_ccb_task_free() call.
When complete() is called, the upper layer may free the sas_task. As such,
we should not touch the associated sas_task afterwards, but we do so in the
pm8001_ccb_task_free() call.
Fix by swapping the complete() and pm8001_ccb_task_free() calls ordering. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix use-after-free for aborted TMF sas_task
Currently a use-after-free may occur if a TMF sas_task is aborted before we
handle the IO completion in mpi_ssp_completion(). The abort occurs due to
timeout.
When the timeout occurs, the SAS_TASK_STATE_ABORTED flag is set and the
sas_task is freed in pm8001_exec_internal_tmf_task().
However, if the I/O completion occurs later, the I/O completion still
thinks that the sas_task is available. Fix this by clearing the ccb->task
if the TMF times out - the I/O completion handler does nothing if this
pointer is cleared. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix a possible use-after-free in controller reset during load
Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl
readiness for AER submission. This may lead to a use-after-free
condition that was observed with nvme-tcp.
The race condition may happen in the following scenario:
1. driver executes its reset_ctrl_work
2. -> nvme_stop_ctrl - flushes ctrl async_event_work
3. ctrl sends AEN which is received by the host, which in turn
schedules AEN handling
4. teardown admin queue (which releases the queue socket)
5. AEN processed, submits another AER, calling the driver to submit
6. driver attempts to send the cmd
==> use-after-free
In order to fix that, add ctrl state check to validate the ctrl
is actually able to accept the AER submission.
This addresses the above race in controller resets because the driver
during teardown should:
1. change ctrl state to RESETTING
2. flush async_event_work (as well as other async work elements)
So after 1,2, any other AER command will find the
ctrl state to be RESETTING and bail out without submitting the AER. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free after failure to create a snapshot
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot:
1) We allocated the pending snapshot and added it to the transaction's
list of pending snapshots;
2) We call btrfs_commit_transaction(), and it fails either at the first
call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups().
In both cases, we don't abort the transaction and we release our
transaction handle. We jump to the 'fail' label and free the pending
snapshot structure. We return with the pending snapshot still in the
transaction's list;
3) Another task commits the transaction. This time there's no error at
all, and then during the transaction commit it accesses a pointer
to the pending snapshot structure that the snapshot creation task
has already freed, resulting in a user-after-free.
This issue could actually be detected by smatch, which produced the
following warning:
fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list
So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
moxart: fix potential use-after-free on remove path
It was reported that the mmc host structure could be accessed after it
was freed in moxart_remove(), so fix this by saving the base register of
the device and using it instead of the pointer dereference. |
| A use-after-free in the MPEG1or2Demux::newElementaryStream() function of Live555 Streaming Media v2018.09.02 allows attackers to cause a Denial of Service (DoS) via supplying a crafted MPEG Program stream. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix potential use-after-free in oplock/lease break ack
If ksmbd_iov_pin_rsp return error, use-after-free can happen by
accessing opinfo->state and opinfo_put and ksmbd_fd_put could
called twice. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix uaf in nbd_genl_connect() error path
There is a use-after-free issue in nbd:
block nbd6: Receive control failed (result -104)
block nbd6: shutting down sockets
==================================================================
BUG: KASAN: slab-use-after-free in recv_work+0x694/0xa80 drivers/block/nbd.c:1022
Write of size 4 at addr ffff8880295de478 by task kworker/u33:0/67
CPU: 2 UID: 0 PID: 67 Comm: kworker/u33:0 Not tainted 6.15.0-rc5-syzkaller-00123-g2c89c1b655c0 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: nbd6-recv recv_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_dec include/linux/atomic/atomic-instrumented.h:592 [inline]
recv_work+0x694/0xa80 drivers/block/nbd.c:1022
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
nbd_genl_connect() does not properly stop the device on certain
error paths after nbd_start_device() has been called. This causes
the error path to put nbd->config while recv_work continue to use
the config after putting it, leading to use-after-free in recv_work.
This patch moves nbd_start_device() after the backend file creation. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: Fix use-after-free in tipc_conn_close().
syzbot reported a null-ptr-deref in tipc_conn_close() during netns
dismantle. [0]
tipc_topsrv_stop() iterates tipc_net(net)->topsrv->conn_idr and calls
tipc_conn_close() for each tipc_conn.
The problem is that tipc_conn_close() is called after releasing the
IDR lock.
At the same time, there might be tipc_conn_recv_work() running and it
could call tipc_conn_close() for the same tipc_conn and release its
last ->kref.
Once we release the IDR lock in tipc_topsrv_stop(), there is no
guarantee that the tipc_conn is alive.
Let's hold the ref before releasing the lock and put the ref after
tipc_conn_close() in tipc_topsrv_stop().
[0]:
BUG: KASAN: use-after-free in tipc_conn_close+0x122/0x140 net/tipc/topsrv.c:165
Read of size 8 at addr ffff888099305a08 by task kworker/u4:3/435
CPU: 0 PID: 435 Comm: kworker/u4:3 Not tainted 4.19.204-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: netns cleanup_net
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1fc/0x2ef lib/dump_stack.c:118
print_address_description.cold+0x54/0x219 mm/kasan/report.c:256
kasan_report_error.cold+0x8a/0x1b9 mm/kasan/report.c:354
kasan_report mm/kasan/report.c:412 [inline]
__asan_report_load8_noabort+0x88/0x90 mm/kasan/report.c:433
tipc_conn_close+0x122/0x140 net/tipc/topsrv.c:165
tipc_topsrv_stop net/tipc/topsrv.c:701 [inline]
tipc_topsrv_exit_net+0x27b/0x5c0 net/tipc/topsrv.c:722
ops_exit_list+0xa5/0x150 net/core/net_namespace.c:153
cleanup_net+0x3b4/0x8b0 net/core/net_namespace.c:553
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
Allocated by task 23:
kmem_cache_alloc_trace+0x12f/0x380 mm/slab.c:3625
kmalloc include/linux/slab.h:515 [inline]
kzalloc include/linux/slab.h:709 [inline]
tipc_conn_alloc+0x43/0x4f0 net/tipc/topsrv.c:192
tipc_topsrv_accept+0x1b5/0x280 net/tipc/topsrv.c:470
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
Freed by task 23:
__cache_free mm/slab.c:3503 [inline]
kfree+0xcc/0x210 mm/slab.c:3822
tipc_conn_kref_release net/tipc/topsrv.c:150 [inline]
kref_put include/linux/kref.h:70 [inline]
conn_put+0x2cd/0x3a0 net/tipc/topsrv.c:155
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
The buggy address belongs to the object at ffff888099305a00
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 8 bytes inside of
512-byte region [ffff888099305a00, ffff888099305c00)
The buggy address belongs to the page:
page:ffffea000264c140 count:1 mapcount:0 mapping:ffff88813bff0940 index:0x0
flags: 0xfff00000000100(slab)
raw: 00fff00000000100 ffffea00028b6b88 ffffea0002cd2b08 ffff88813bff0940
raw: 0000000000000000 ffff888099305000 0000000100000006 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888099305900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888099305980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888099305a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888099305a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888099305b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb |
| In the Linux kernel, the following vulnerability has been resolved:
tls: always refresh the queue when reading sock
After recent changes in net-next TCP compacts skbs much more
aggressively. This unearthed a bug in TLS where we may try
to operate on an old skb when checking if all skbs in the
queue have matching decrypt state and geometry.
BUG: KASAN: slab-use-after-free in tls_strp_check_rcv+0x898/0x9a0 [tls]
(net/tls/tls_strp.c:436 net/tls/tls_strp.c:530 net/tls/tls_strp.c:544)
Read of size 4 at addr ffff888013085750 by task tls/13529
CPU: 2 UID: 0 PID: 13529 Comm: tls Not tainted 6.16.0-rc5-virtme
Call Trace:
kasan_report+0xca/0x100
tls_strp_check_rcv+0x898/0x9a0 [tls]
tls_rx_rec_wait+0x2c9/0x8d0 [tls]
tls_sw_recvmsg+0x40f/0x1aa0 [tls]
inet_recvmsg+0x1c3/0x1f0
Always reload the queue, fast path is to have the record in the queue
when we wake, anyway (IOW the path going down "if !strp->stm.full_len"). |
| In the Linux kernel, the following vulnerability has been resolved:
rpl: Fix use-after-free in rpl_do_srh_inline().
Running lwt_dst_cache_ref_loop.sh in selftest with KASAN triggers
the splat below [0].
rpl_do_srh_inline() fetches ipv6_hdr(skb) and accesses it after
skb_cow_head(), which is illegal as the header could be freed then.
Let's fix it by making oldhdr to a local struct instead of a pointer.
[0]:
[root@fedora net]# ./lwt_dst_cache_ref_loop.sh
...
TEST: rpl (input)
[ 57.631529] ==================================================================
BUG: KASAN: slab-use-after-free in rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
Read of size 40 at addr ffff888122bf96d8 by task ping6/1543
CPU: 50 UID: 0 PID: 1543 Comm: ping6 Not tainted 6.16.0-rc5-01302-gfadd1e6231b1 #23 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
kasan_check_range (mm/kasan/generic.c:175 (discriminator 1) mm/kasan/generic.c:189 (discriminator 1))
__asan_memmove (mm/kasan/shadow.c:94 (discriminator 2))
rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
rpl_input (net/ipv6/rpl_iptunnel.c:201 net/ipv6/rpl_iptunnel.c:282)
lwtunnel_input (net/core/lwtunnel.c:459)
ipv6_rcv (./include/net/dst.h:471 (discriminator 1) ./include/net/dst.h:469 (discriminator 1) net/ipv6/ip6_input.c:79 (discriminator 1) ./include/linux/netfilter.h:317 (discriminator 1) ./include/linux/netfilter.h:311 (discriminator 1) net/ipv6/ip6_input.c:311 (discriminator 1))
__netif_receive_skb_one_core (net/core/dev.c:5967)
process_backlog (./include/linux/rcupdate.h:869 net/core/dev.c:6440)
__napi_poll.constprop.0 (net/core/dev.c:7452)
net_rx_action (net/core/dev.c:7518 net/core/dev.c:7643)
handle_softirqs (kernel/softirq.c:579)
do_softirq (kernel/softirq.c:480 (discriminator 20))
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
__dev_queue_xmit (net/core/dev.c:4740)
ip6_finish_output2 (./include/linux/netdevice.h:3358 ./include/net/neighbour.h:526 ./include/net/neighbour.h:540 net/ipv6/ip6_output.c:141)
ip6_finish_output (net/ipv6/ip6_output.c:215 net/ipv6/ip6_output.c:226)
ip6_output (./include/linux/netfilter.h:306 net/ipv6/ip6_output.c:248)
ip6_send_skb (net/ipv6/ip6_output.c:1983)
rawv6_sendmsg (net/ipv6/raw.c:588 net/ipv6/raw.c:918)
__sys_sendto (net/socket.c:714 (discriminator 1) net/socket.c:729 (discriminator 1) net/socket.c:2228 (discriminator 1))
__x64_sys_sendto (net/socket.c:2231)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f68cffb2a06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007ffefb7c53d0 EFLAGS: 00000202 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000564cd69f10a0 RCX: 00007f68cffb2a06
RDX: 0000000000000040 RSI: 0000564cd69f10a4 RDI: 0000000000000003
RBP: 00007ffefb7c53f0 R08: 0000564cd6a032ac R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000564cd69f10a4
R13: 0000000000000040 R14: 00007ffefb7c66e0 R15: 0000564cd69f10a0
</TASK>
Allocated by task 1543:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345)
kmem_cache_alloc_node_noprof (./include/linux/kasan.h:250 mm/slub.c:4148 mm/slub.c:4197 mm/slub.c:4249)
kmalloc_reserve (net/core/skbuff.c:581 (discriminator 88))
__alloc_skb (net/core/skbuff.c:669)
__ip6_append_data (net/ipv6/ip6_output.c:1672 (discriminator 1))
ip6_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Tear down vGIC on failed vCPU creation
If kvm_arch_vcpu_create() fails to share the vCPU page with the
hypervisor, we propagate the error back to the ioctl but leave the
vGIC vCPU data initialised. Note only does this leak the corresponding
memory when the vCPU is destroyed but it can also lead to use-after-free
if the redistributor device handling tries to walk into the vCPU.
Add the missing cleanup to kvm_arch_vcpu_create(), ensuring that the
vGIC vCPU structures are destroyed on error. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Make ICC_*SGI*_EL1 undef in the absence of a vGICv3
On a system with a GICv3, if a guest hasn't been configured with
GICv3 and that the host is not capable of GICv2 emulation,
a write to any of the ICC_*SGI*_EL1 registers is trapped to EL2.
We therefore try to emulate the SGI access, only to hit a NULL
pointer as no private interrupt is allocated (no GIC, remember?).
The obvious fix is to give the guest what it deserves, in the
shape of a UNDEF exception. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
There is a potential UAF scenario in the case of an LPI translation
cache hit racing with an operation that invalidates the cache, such
as a DISCARD ITS command. The root of the problem is that
vgic_its_check_cache() does not elevate the refcount on the vgic_irq
before dropping the lock that serializes refcount changes.
Have vgic_its_check_cache() raise the refcount on the returned vgic_irq
and add the corresponding decrement after queueing the interrupt. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-rdma: fix possible use-after-free in transport error_recovery work
While nvme_rdma_submit_async_event_work is checking the ctrl and queue
state before preparing the AER command and scheduling io_work, in order
to fully prevent a race where this check is not reliable the error
recovery work must flush async_event_work before continuing to destroy
the admin queue after setting the ctrl state to RESETTING such that
there is no race .submit_async_event and the error recovery handler
itself changing the ctrl state. |
| A flaw was found in the asynchronous message queue handling of the libsoup library, widely used by GNOME and WebKit-based applications to manage HTTP/2 communications. When network operations are aborted at specific timing intervals, an internal message queue item may be freed twice due to missing state synchronization. This leads to a use-after-free memory access, potentially crashing the affected application. Attackers could exploit this behavior remotely by triggering specific HTTP/2 read and cancel sequences, resulting in a denial-of-service condition. |
| Starting with Firefox 142, it was possible for a compromised child process to trigger a use-after-free in the GPU or browser process using WebGPU-related IPC calls. This may have been usable to escape the child process sandbox. This vulnerability affects Firefox < 144.0.2. |
| In the Linux kernel, the following vulnerability has been resolved:
net: atm: add lec_mutex
syzbot found its way in net/atm/lec.c, and found an error path
in lecd_attach() could leave a dangling pointer in dev_lec[].
Add a mutex to protect dev_lecp[] uses from lecd_attach(),
lec_vcc_attach() and lec_mcast_attach().
Following patch will use this mutex for /proc/net/atm/lec.
BUG: KASAN: slab-use-after-free in lecd_attach net/atm/lec.c:751 [inline]
BUG: KASAN: slab-use-after-free in lane_ioctl+0x2224/0x23e0 net/atm/lec.c:1008
Read of size 8 at addr ffff88807c7b8e68 by task syz.1.17/6142
CPU: 1 UID: 0 PID: 6142 Comm: syz.1.17 Not tainted 6.16.0-rc1-syzkaller-00239-g08215f5486ec #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xcd/0x680 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
lecd_attach net/atm/lec.c:751 [inline]
lane_ioctl+0x2224/0x23e0 net/atm/lec.c:1008
do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159
sock_do_ioctl+0x118/0x280 net/socket.c:1190
sock_ioctl+0x227/0x6b0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated by task 6132:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4328 [inline]
__kvmalloc_node_noprof+0x27b/0x620 mm/slub.c:5015
alloc_netdev_mqs+0xd2/0x1570 net/core/dev.c:11711
lecd_attach net/atm/lec.c:737 [inline]
lane_ioctl+0x17db/0x23e0 net/atm/lec.c:1008
do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159
sock_do_ioctl+0x118/0x280 net/socket.c:1190
sock_ioctl+0x227/0x6b0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6132:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x51/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4643 [inline]
kfree+0x2b4/0x4d0 mm/slub.c:4842
free_netdev+0x6c5/0x910 net/core/dev.c:11892
lecd_attach net/atm/lec.c:744 [inline]
lane_ioctl+0x1ce8/0x23e0 net/atm/lec.c:1008
do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159
sock_do_ioctl+0x118/0x280 net/socket.c:1190
sock_ioctl+0x227/0x6b0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:893 |