| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA nvJPEG library contains a vulnerability where an attacker can cause an out-of-bounds read by means of a specially crafted JPEG file. A successful exploit of this vulnerability might lead to information disclosure or denial of service. |
| The Modbus slave/outstation driver in the OPC Drivers 1.0.20 and earlier in IOServer OPC Server allows remote attackers to cause a denial of service (out-of-bounds read and daemon crash) via a crafted packet. |
| Stack-based buffer overflow in the C++ sample client in Schneider Electric OPC Factory Server (OFS) TLXCDSUOFS33 - 3.35, TLXCDSTOFS33 - 3.35, TLXCDLUOFS33 - 3.35, TLXCDLTOFS33 - 3.35, and TLXCDLFOFS33 - 3.35 allows local users to gain privileges via vectors involving a malformed configuration file. |
| A vulnerability has been found in Tenda AC23 up to 16.03.07.52. Affected by this vulnerability is the function sscanf of the file /goform/SetPptpServerCfg of the component HTTP POST Request Handler. Such manipulation of the argument startIp leads to buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. |
| NanoMQ 0.17.5 has a one-byte heap-based buffer over-read in the conn_handler function of mqtt_parser.c when it processes malformed messages. |
| An integer overflow in WhatsApp could result in remote code execution in an established video call. |
| A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain a stack based overflow vulnerability while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-25000) |
| A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-25206) |
| In the Linux kernel, the following vulnerability has been resolved:
nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic
*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we
subtract one from that making a large number that is then shifted more than the
number of bits that fit into an unsigned long.
UBSAN reports this problem:
UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9
Hardware name: Google Lazor (rev3+) with KB Backlight (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x170
show_stack+0x24/0x30
dump_stack_lvl+0x64/0x7c
dump_stack+0x18/0x38
ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194
__nvmem_cell_read+0x1ec/0x21c
nvmem_cell_read+0x58/0x94
nvmem_cell_read_variable_common+0x4c/0xb0
nvmem_cell_read_variable_le_u32+0x40/0x100
a6xx_gpu_init+0x170/0x2f4
adreno_bind+0x174/0x284
component_bind_all+0xf0/0x264
msm_drm_bind+0x1d8/0x7a0
try_to_bring_up_master+0x164/0x1ac
__component_add+0xbc/0x13c
component_add+0x20/0x2c
dp_display_probe+0x340/0x384
platform_probe+0xc0/0x100
really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120
driver_probe_device+0x4c/0xfc
__device_attach_driver+0xb0/0x128
bus_for_each_drv+0x90/0xdc
__device_attach+0xc8/0x174
device_initial_probe+0x20/0x2c
bus_probe_device+0x40/0xa4
deferred_probe_work_func+0x7c/0xb8
process_one_work+0x128/0x21c
process_scheduled_works+0x40/0x54
worker_thread+0x1ec/0x2a8
kthread+0x138/0x158
ret_from_fork+0x10/0x20
Fix it by making sure there are any bits to mask out. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tls: Fix flipped sign in tls_err_abort() calls
sk->sk_err appears to expect a positive value, a convention that ktls
doesn't always follow and that leads to memory corruption in other code.
For instance,
[kworker]
tls_encrypt_done(..., err=<negative error from crypto request>)
tls_err_abort(.., err)
sk->sk_err = err;
[task]
splice_from_pipe_feed
...
tls_sw_do_sendpage
if (sk->sk_err) {
ret = -sk->sk_err; // ret is positive
splice_from_pipe_feed (continued)
ret = actor(...) // ret is still positive and interpreted as bytes
// written, resulting in underflow of buf->len and
// sd->len, leading to huge buf->offset and bogus
// addresses computed in later calls to actor()
Fix all tls_err_abort() callers to pass a negative error code
consistently and centralize the error-prone sign flip there, throwing in
a warning to catch future misuse and uninlining the function so it
really does only warn once. |
| An issue was discovered in MBed OS 6.16.0. When parsing hci reports, the hci parsing software dynamically determines the length of a list of reports by reading a byte from an input stream. It then fetches the length of the first report, uses it to calculate the beginning of the second report, etc. In doing this, it tracks the largest report so it can later allocate a buffer that fits every individual report (but only one at a time). It does not, however, validate that these addresses are all contained within the buffer passed to hciEvtProcessLeExtAdvReport. It is then possible, though unlikely, that the buffer designated to hold the reports is allocated in such a way that one of these out-of-bounds length fields is contained within the new buffer. When the (n-1)th report is copied, it overwrites the length field of the nth report. This now corrupted length field is then used for a memcpy into the new buffer, which may lead to a buffer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: PPC: Book3S HV: Fix stack handling in idle_kvm_start_guest()
In commit 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in
C") kvm_start_guest() became idle_kvm_start_guest(). The old code
allocated a stack frame on the emergency stack, but didn't use the
frame to store anything, and also didn't store anything in its caller's
frame.
idle_kvm_start_guest() on the other hand is written more like a normal C
function, it creates a frame on entry, and also stores CR/LR into its
callers frame (per the ABI). The problem is that there is no caller
frame on the emergency stack.
The emergency stack for a given CPU is allocated with:
paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
So emergency_sp actually points to the first address above the emergency
stack allocation for a given CPU, we must not store above it without
first decrementing it to create a frame. This is different to the
regular kernel stack, paca->kstack, which is initialised to point at an
initial frame that is ready to use.
idle_kvm_start_guest() stores the backchain, CR and LR all of which
write outside the allocation for the emergency stack. It then creates a
stack frame and saves the non-volatile registers. Unfortunately the
frame it creates is not large enough to fit the non-volatiles, and so
the saving of the non-volatile registers also writes outside the
emergency stack allocation.
The end result is that we corrupt whatever is at 0-24 bytes, and 112-248
bytes above the emergency stack allocation.
In practice this has gone unnoticed because the memory immediately above
the emergency stack happens to be used for other stack allocations,
either another CPUs mc_emergency_sp or an IRQ stack. See the order of
calls to irqstack_early_init() and emergency_stack_init().
The low addresses of another stack are the top of that stack, and so are
only used if that stack is under extreme pressue, which essentially
never happens in practice - and if it did there's a high likelyhood we'd
crash due to that stack overflowing.
Still, we shouldn't be corrupting someone else's stack, and it is purely
luck that we aren't corrupting something else.
To fix it we save CR/LR into the caller's frame using the existing r1 on
entry, we then create a SWITCH_FRAME_SIZE frame (which has space for
pt_regs) on the emergency stack with the backchain pointing to the
existing stack, and then finally we switch to the new frame on the
emergency stack. |
| A CORS misconfiguration in Nginx Proxy Manager v2.12.3 allows unauthorized domains to access sensitive data, particularly JWT tokens, due to improper validation of the Origin header. This misconfiguration enables attackers to intercept tokens using a simple browser script and exfiltrate them to a remote attacker-controlled server, potentially leading to unauthorized actions within the application. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: ti: Fix missing sentinel for clk_div_table
_get_table_maxdiv() tries to access "clk_div_table" array out of bound
defined in phy-j721e-wiz.c. Add a sentinel entry to prevent
the following global-out-of-bounds error reported by enabling KASAN.
[ 9.552392] BUG: KASAN: global-out-of-bounds in _get_maxdiv+0xc0/0x148
[ 9.558948] Read of size 4 at addr ffff8000095b25a4 by task kworker/u4:1/38
[ 9.565926]
[ 9.567441] CPU: 1 PID: 38 Comm: kworker/u4:1 Not tainted 5.16.0-116492-gdaadb3bd0e8d-dirty #360
[ 9.576242] Hardware name: Texas Instruments J721e EVM (DT)
[ 9.581832] Workqueue: events_unbound deferred_probe_work_func
[ 9.587708] Call trace:
[ 9.590174] dump_backtrace+0x20c/0x218
[ 9.594038] show_stack+0x18/0x68
[ 9.597375] dump_stack_lvl+0x9c/0xd8
[ 9.601062] print_address_description.constprop.0+0x78/0x334
[ 9.606830] kasan_report+0x1f0/0x260
[ 9.610517] __asan_load4+0x9c/0xd8
[ 9.614030] _get_maxdiv+0xc0/0x148
[ 9.617540] divider_determine_rate+0x88/0x488
[ 9.622005] divider_round_rate_parent+0xc8/0x124
[ 9.626729] wiz_clk_div_round_rate+0x54/0x68
[ 9.631113] clk_core_determine_round_nolock+0x124/0x158
[ 9.636448] clk_core_round_rate_nolock+0x68/0x138
[ 9.641260] clk_core_set_rate_nolock+0x268/0x3a8
[ 9.645987] clk_set_rate+0x50/0xa8
[ 9.649499] cdns_sierra_phy_init+0x88/0x248
[ 9.653794] phy_init+0x98/0x108
[ 9.657046] cdns_pcie_enable_phy+0xa0/0x170
[ 9.661340] cdns_pcie_init_phy+0x250/0x2b0
[ 9.665546] j721e_pcie_probe+0x4b8/0x798
[ 9.669579] platform_probe+0x8c/0x108
[ 9.673350] really_probe+0x114/0x630
[ 9.677037] __driver_probe_device+0x18c/0x220
[ 9.681505] driver_probe_device+0xac/0x150
[ 9.685712] __device_attach_driver+0xec/0x170
[ 9.690178] bus_for_each_drv+0xf0/0x158
[ 9.694124] __device_attach+0x184/0x210
[ 9.698070] device_initial_probe+0x14/0x20
[ 9.702277] bus_probe_device+0xec/0x100
[ 9.706223] deferred_probe_work_func+0x124/0x180
[ 9.710951] process_one_work+0x4b0/0xbc0
[ 9.714983] worker_thread+0x74/0x5d0
[ 9.718668] kthread+0x214/0x230
[ 9.721919] ret_from_fork+0x10/0x20
[ 9.725520]
[ 9.727032] The buggy address belongs to the variable:
[ 9.732183] clk_div_table+0x24/0x440 |
| Mattermost Mobile Apps versions <=2.22.0 fail to properly handle specially crafted attachment names, which allows an attacker to crash the mobile app for any user who opened a channel containing the specially crafted attachment |
| Mattermost Mobile versions <=2.22.0 fail to properly handle posts with attachments containing fields that cannot be cast to a String, which allows an attacker to cause the mobile to crash via creating and sending such a post to a channel. |
| A security flaw has been discovered in vim up to 9.1.1615. Affected by this vulnerability is the function main of the file src/xxd/xxd.c of the component xxd. The manipulation results in buffer overflow. The attack requires a local approach. The exploit has been released to the public and may be exploited. Upgrading to version 9.1.1616 addresses this issue. The patch is identified as eeef7c77436a78cd27047b0f5fa6925d56de3cb0. It is recommended to upgrade the affected component. |
| A vulnerability has been identified in OpenV2G (All versions < V0.9.6). The OpenV2G EXI parsing feature is missing a length check when parsing X509 serial numbers. Thus, an attacker could introduce a buffer overflow that leads to memory corruption. |
| Mattermost Confluence Plugin version <1.5.0 fails to handle unexpected request body which allows attackers to crash the plugin via constant hit to create channel subscription endpoint with an invalid request body. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Fix user-memory-access bug in uclogic_params_ugee_v2_init_event_hooks()
When CONFIG_HID_UCLOGIC=y and CONFIG_KUNIT_ALL_TESTS=y, launch kernel and
then the below user-memory-access bug occurs.
In hid_test_uclogic_params_cleanup_event_hooks(),it call
uclogic_params_ugee_v2_init_event_hooks() with the first arg=NULL, so
when it calls uclogic_params_ugee_v2_has_battery(), the hid_get_drvdata()
will access hdev->dev with hdev=NULL, which will cause below
user-memory-access.
So add a fake_device with quirks member and call hid_set_drvdata()
to assign hdev->dev->driver_data which avoids the null-ptr-def bug
for drvdata->quirks in uclogic_params_ugee_v2_has_battery(). After applying
this patch, the below user-memory-access bug never occurs.
general protection fault, probably for non-canonical address 0xdffffc0000000329: 0000 [#1] PREEMPT SMP KASAN
KASAN: probably user-memory-access in range [0x0000000000001948-0x000000000000194f]
CPU: 5 PID: 2189 Comm: kunit_try_catch Tainted: G B W N 6.6.0-rc2+ #30
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600
Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00
RSP: 0000:ffff88810679fc88 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000
RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0
R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92
R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080
FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0
DR0: ffffffff8fdd6cf4 DR1: ffffffff8fdd6cf5 DR2: ffffffff8fdd6cf6
DR3: ffffffff8fdd6cf7 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<TASK>
? die_addr+0x3d/0xa0
? exc_general_protection+0x144/0x220
? asm_exc_general_protection+0x22/0x30
? uclogic_params_ugee_v2_init_event_hooks+0x87/0x600
? sched_clock_cpu+0x69/0x550
? uclogic_parse_ugee_v2_desc_gen_params+0x70/0x70
? load_balance+0x2950/0x2950
? rcu_trc_cmpxchg_need_qs+0x67/0xa0
hid_test_uclogic_params_cleanup_event_hooks+0x9e/0x1a0
? uclogic_params_ugee_v2_init_event_hooks+0x600/0x600
? __switch_to+0x5cf/0xe60
? migrate_enable+0x260/0x260
? __kthread_parkme+0x83/0x150
? kunit_try_run_case_cleanup+0xe0/0xe0
kunit_generic_run_threadfn_adapter+0x4a/0x90
? kunit_try_catch_throw+0x80/0x80
kthread+0x2b5/0x380
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x2d/0x70
? kthread_complete_and_exit+0x20/0x20
ret_from_fork_asm+0x11/0x20
</TASK>
Modules linked in:
Dumping ftrace buffer:
(ftrace buffer empty)
---[ end trace 0000000000000000 ]---
RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600
Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00
RSP: 0000:ffff88810679fc88 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000
RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0
R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92
R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080
FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0
DR0: ffffffff8fdd6cf4 DR1:
---truncated--- |